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Abstract 

The evolution of social behavior in Astyanax mexicanus, which exists as a sighted, 

surface-dwelling morph and a blind, cave-dwelling morph, provides a model for understanding 

how environmental pressures shape social behaviors. We compared the shoaling behavior of 

blind and surface A. mexicanus to that of zebrafish (Danio rerio), and examined the effects of 

nutritional state and the neuropeptides isotocin (IT) and arginine vasotocin (AVT) on their social 

behavior. Blind cavefish not only fail to form shoals, but actively avoid conspecifics, with 

hunger further diminishing their social cohesion. Administration of low doses of AVT and an IT 

antagonist partially restored social behavior in blind cavefish, reducing distances between 

individuals, whereas surface fish exhibited minimal or opposite responses to these hormonal 

manipulations. Our findings suggest that the loss of shoaling behavior in blind cavefish is not a 

consequence of visual impairment alone, as they remain capable of detecting and responding to 

others. Instead, this behavior likely reflects an adaptive response to their resource-poor, predator-

free cave environment, where shoaling may be disadvantageous. The differing responses to 

nonapeptides between the morphs indicate that blind cavefish may have lost the motivation to 

shoal rather than the ability, highlighting how ecological pressures can shape social behavior. 
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Introduction 

Social behaviors vary widely across species, often shaped by diverse environmental 

pressures. Among vertebrates, fish exhibit an extensive range of social behaviors, from 

predominantly solitary species (1) to those that engage in cooperative breeding (2), establish 

dominance hierarchies (3), or display reciprocal altruism (4). Most social fish species engage in 

collective movement, also called shoaling (5-8). Shoaling offers significant fitness benefits, 

including predator avoidance, as it enables quicker predator detection and creates predator 

confusion when faced with multiple identical targets (9-16). Shoaling also enhances foraging 

efficiency by enabling fish to locate and exploit larger food patches and increasing feeding 

efficiency by reducing the need for individual vigilance (15,17-23). However, aggregation can 

also have costs, such as increased competition for limited resources (24,25) or an elevated risk of 

attracting predators to large groups (12,13,26).  

The balance between the benefits and costs of shoaling raises intriguing questions about 

the evolution of this behavior and how environmental conditions shape it (27-28). For instance, 

Trinidadian guppies (Poecilia reticulata) derived from populations originating in low-predator 

environments display reduced social cohesion compared to descendants of fish from high-

predation areas (29-35). Desert pupfish (Cyprinodon macularius), which evolved in predator-free 

environments, appear to have lost defensive behaviors such as responses to alarm pheromones 

(36).  

Collective behaviors may also respond to variations in current environmental conditions. 

Factors like pollution, waterway obstruction, and noise modify group cohesion (37-40). 

Zebrafish (Danio rerio) exposed to simulated predator risks form denser shoals (5). Gulf 

menhaden (Brevoortia patronus) form tighter, more synchronized groups in physically complex 

environments (41), while zebrafish exhibit the opposite pattern (42). Hungry zebrafish prefer to 

shoal with well-fed conspecifics, potentially to increase their chances of finding food while 

minimizing competition (43). When food is present, zebrafish also increase their distance from 

neighbors (5). Food deprivation reduces shoaling tendencies across species; food-deprived 

banded killifish (Fundulus diaphanus), walleye pollock (Theragra chalcogramma) and three-

spined sticklebacks (Gasterosteus aculeatus) display a reduced tendency to maintain tight shoals 

and display less cohesion with conspecifics (44-46). European sea bass (Dicentrarchus labrax) 

exhibit fewer interactions with others when food-deprived (47). 

The Mexican tetra (Astyanax mexicanus) is a valuable model for studying the evolution 

of social behavior in fish. Approximately 150 to 200 thousand years ago, some surface-dwelling 

populations of this species migrated into pitch-black caves, where they evolved a blind cave-

dwelling form (48-49). Cave-adapted populations are now found in up to 34 different caves (50), 

likely originating from two independent colonization events (49). While the repeated evolution 

of similar cave-adapted traits across these populations suggests convergent evolution (51-54), 



 

 

evidence of gene flow between cave populations indicates that some adaptations may have 

spread through genetic exchange (48). Blind A. mexicanus populations underwent a host of 

morphological, physiological, and behavioral adaptations (55-64), believed to have been driven 

not only by the absence of light but also by the lack of predators and extreme scarcity of food in 

their cave habitats. Blind A. mexicanus feed on low-nutrition organic matter that occasionally 

drifts into the caves, such as detritus, algae, fungi, bat guano, and the remains of other cave-

dwelling organisms (51,65-68). Many populations of blind A. mexicanus are characterized by 

their relentless pursuit of food and have been suggested to be insatiable (55,58). 

In addition to losing their eyes and pigmentation, cave-dwelling blind A. mexicanus have 

an enhanced lateral line system, a sensory adaptation crucial for survival in the dark (52,69-71). 

The lateral line, an array of pressure-sensitive cells along the sides of fish, acts as a sensory 

organ that detects the velocity of water flow generated by the fish’s own movements or by 

external currents (72-74). Blind A. mexicanus possess a higher density of these cells, improving 

their sensitivity to water movements, aiding in the detection of food and obstacles (75-82). They 

also generate a flow as they swim and can detect distortions in the flow caused by nearby objects 

(83-85).  

Although born with eyes, blind A. mexicanus undergo lens apoptosis early in 

development, a process driven by increased expression of the sonic hedgehog (Shh) gene (86-

88). Elevated Shh, alongside Fibroblast Growth Factor (Fgf) signaling, contributes to many of 

the adaptations seen in blind A. mexicanus, such as larger jaws, an increased number of taste 

buds, and expanded forebrain regions, including the olfactory system and hypothalamus, which 

result in a higher number of neurons associated with feeding behavior (89-92). Consequently, 

blind A. mexicanus sleep less, spend more time foraging, and have heightened appetites—

adaptations that enhance their ability to maximize food intake and forage more efficiently in the 

dark (55,57-58,68,88,93).  

Alongside these physiological adaptations, blind A. mexicanus have undergone several 

behavioral changes (70), most notably their complete loss of shoaling behaviors 

(51,58,62,65,67,94-98). Although this has often been attributed to their loss of vision (51,62,94), 

it is essential to consider the broader ecological context: in addition to scarce food, blind cavefish 

have no predators (51,65). Therefore, the adaptive benefits of shoaling, such as predator 

avoidance and collective foraging, are greatly reduced in their environments. Here, we propose 

that the loss of shoaling in blind A. mexicanus results more from a decrease in their motivation to 

shoal than an inability to aggregate. 

While shoaling remains a vital survival mechanism for surface-dwelling A. mexicanus, 

solitary foraging might be a more effective strategy in habitats with high competition for limited 

resources (99-100). Swimming independently might also improve lateral line function by 

enhancing the signal-to-noise ratio, aiding navigation and foraging in complete darkness (58,79). 



 

 

Blind A. mexicanus also exhibit a reduced response to alarm substances, further suggesting that 

the absence of predators has relaxed the selective pressures maintaining shoaling and defensive 

behaviors in their surface-dwelling relatives (62,101). Even hybrids of surface and cave morphs 

exhibit reduced shoaling, despite retaining functional vision, indicating that inherited 

predispositions from blind A. mexicanus, rather than vision loss alone, contribute to this 

behavioral shift (62).  

Alongside the loss of shoaling, blind A. mexicanus show a significant reduction in 

aggressive behaviors, such as a complete loss of territoriality and hierarchical dominance. In 

contrast, surface A. mexicanus exhibit hierarchical dominance and high levels of aggression 

(58,67,94-96,102). As with shoaling, this loss of agonistic behaviors in blind A. mexicanus was 

initially attributed to a loss of vision (94-95,103). However, subsequent studies have 

demonstrated that surface-dwelling sighted A. mexicanus remain aggressive even in complete 

darkness (58), and hybrid populations also exhibit reduced aggression (104). This behavioral 

shift likely stems from changes in food-seeking behavior and alterations to the serotonergic 

system (58,96,102). 

Hormones likely play a crucial role in shaping social behaviors in blind A. mexicanus, as 

in many fish species (105-106). Adaptations in hypothalamic brain regions not only enhance 

their foraging abilities but also contribute to changes in their neuroendocrine system by reducing 

arginine vasopressin (AVT)-producing neurons (92). AVT, known for its role in stress regulation 

(107), may contribute to the distinct behaviors of blind A. mexicanus, such as their lower 

baseline cortisol levels, compared to surface A. mexicanus (108). As AVT also influences social 

behavior, these neuroendocrine changes may help explain blind A. mexicanus’s reduced 

shoaling. Examining nonapeptides like AVT could thus offer valuable insights into the 

mechanisms underlying social behavior—or its absence—in this species. 

Neuropeptides such as AVT and isotocin (IT)—the fish analogs of the mammalian 

arginine vasopressin (AVP) and oxytocin (OT)—play essential roles in regulating social 

behaviors across vertebrate taxa (109-110). In goldfish (Carassius auratus), IT decreases 

proximity to conspecifics, while AVT promotes shoaling (111). In guppies, IT increases social 

proximity, while AVT decreases grouping (112; but see 113). In zebrafish, AVT reduces social 

interactions and aggression (114-115), but it increases aggression in species such as bluehead 

wrasse (Thalassoma bifasciatum; 116-117), brown ghost knifefish (Apteronotus leptorhynchus; 

118), and beaugregory damselfish (Stegastes leucostictus; 119), highlighting species-specific 

differences in neuropeptide effects. Peripherally administered nonapeptides have been shown to 

cross the fish blood-brain barrier (114,116,119-122), which is likely more permeable to 

neuropeptides than its mammalian counterpart (123-124). 

Cichlids also show varied responses: in male Neolamprologus pulcher, IT reduces 

grouping but increases sensitivity to social stimuli, while an IT-receptor antagonist promotes 



 

 

grouping (120-121). N. pulcher also has higher expression of IT-related genes than the non-

social cichlid Telmatochromis temporalis (125). In African cichlids (Astatotilapia burtoni), AVT 

helps maintain social hierarchies, with dominant males showing higher AVT expression than 

subordinates (126-127). Guppies exposed to predation risk show increased AVT expression 

without a corresponding change in IT expression, suggesting that predator presence may 

specifically enhance AVT’s role in social regulation (128). In mosquitofish (Gambusia affinis), 

IT modulates social behaviors in context-specific ways, such as reducing interactions with males 

while maintaining associations with conspecific females under conditions of male harassment 

(129). This supports the social salience hypothesis that OT/IT increases the salience of social 

stimuli, thus adapting social behavior to environmental context (129-131).  

In mammals, OT enhances positive social interactions, increasing proximity in lions 

(132), partner-seeking behavior in marmosets (133), and caregiver attention in infant macaques 

(134). In vampire bats, OT increases food donation size and allogrooming (135), in naked mole-

rats, it boosts huddling and proximity to familiar conspecifics (136), and in meerkats, it increases 

cooperative behaviors, such as pup-feeding, while reducing aggression (137). In humans, OT is 

linked to trust, empathy, and social connectedness (138-140). In contrast, AVP is more often 

linked to aggression, territoriality, and defense. AVP increases aggression in male rodents (141) 

and AVP analogs help maintain social bonds and manage dominance hierarchies in birds, similar 

to their roles in fish (142).  

To investigate whether the loss of shoaling in blind A. mexicanus represents an adaptive 

strategy rather than a physiological constraint, we examined the shoaling tendencies of surface-

dwelling and cave-dwelling A. mexicanus morphs alongside zebrafish—a well-studied shoaling 

species used as a control. Zebrafish have been extensively used in research examining collective 

behavior (5) and the effects of AVT and IT on social behavior (114-115). We also compared 

these groups to a theoretical shoaling-null model that assumed they were swimming randomly, 

ignoring one another. We hypothesized that blind A. mexicanus would exhibit reduced shoaling 

compared to sighted A. mexicanus and zebrafish, reflecting an adaptive response to their 

resource-scarce, predator-free cave environments. Next, we manipulated the nutritional state of 

blind A. mexicanus to examine the effects of hunger on shoaling. Fish were observed in three 

states: fasted (24 hours after feeding), post-absorptive (3-5 hours after feeding), and fed (10 min 

after feeding). We hypothesized that hunger would reduce social cohesion while feeding would 

enhance it, as it does in other species (44-47). Finally, we administered varying doses of IT and 

AVT and their antagonists to both A. mexicanus morphs. We hypothesized that hormonal 

responses would differ between morphs, reflecting their contrasting reliance on social 

interactions and differences in their neuroendocrine regulation. Together, these experiments aim 

to reveal how adaptations to extreme ecological conditions, like the complete absence of light, 

contributed to the loss of shoaling in cave-dwelling populations, advancing our understanding of 

the mechanisms underlying social behaviors across species. 



 

 

Methods 

Ethics statement 

 All experimental procedures were approved by the Wilfrid Laurier Animal Care 

Committee (AUP R22007) and followed all Canadian Council on Animal Care regulations. 

Subjects and Housing 

Subjects were 35 wild-type zebrafish (Danio rerio) bred in-house, 180 Pachón cavefish 

(Astyanax mexicanus) acquired from a local supplier (Tropical Fish Room, Brantford, ON), and 

120 surface-dwelling Astyanax mexicanus, also bred in-house. In Experiment 1, we tested 35 

zebrafish, 35 blind A. mexicanus, and 30 surface A. mexicanus on shoaling. Experiment 2 

involved 55 blind A. mexicanus reused from Experiment 4 to investigate the effects of hunger on 

shoaling. Experiment 3 tested 90 blind A. mexicanus and 90 surface fish to evaluate the impact of 

hormone administration. Experiment 4 involved 55 blind A. mexicanus and focused on the 

effects of increased dosages of certain hormones. With the exception of Experiment 2, each fish 

was only tested once. Fish in Experiment 2 had completed experiment 4 at least one month 

earlier. 

Zebrafish were housed in 10-liter tanks in a high-density rack system (Pentair), with no 

more than 10 fish per tank, while blind and surface-dwelling A. mexicanus were housed in 

groups of 5 to 20 in 10-gallon tanks (50 x 25 x 30 cm). All tanks were maintained at 23 ± 1°C 

with a 12 h:12 h light-dark cycle (lights on at 7:00 am). Water quality parameters were 

monitored daily. All fish were fed dried brine shrimp daily ad lib, except during Experiment 2, 

where we manipulated nutritional state. 

Experimental Setup 

Each experiment was conducted in a featureless, white circular tank (60 cm diameter; 

Figure S1), filled with 10 cm of water at 23 ± 1°C. The water in the experimental tank was 

changed daily, with temperature and salinity matched to those of the housing tanks. Behavioral 

trials were recorded using a video camera (Canon Vixia HF R700) mounted directly above the 

tank.  

Procedure 

In all experiments, groups of fish (N = 5) were first gently netted from their home tanks 

into a bucket filled with home-tank water. Fish were then either transferred directly to the testing 

arena (Experiments 1 and 2) or given injections before testing (Experiments 3 and 4; see below). 

Fish were released into the center of the experimental tank and recorded swimming freely for 10 

minutes (Videos S1 and S2). At the end of each trial, fish were returned to their home tanks.  



 

 

In Experiment 1, seven groups of zebrafish, seven groups of blind A. mexicanus, and six 

groups of surface fish were tested to assess baseline shoaling. In Experiment 2, eleven groups of 

blind A. mexicanus were randomly divided into two conditions. Six groups were food-deprived 

for 24 hours before testing (fasted condition), and five groups were fed ad lib 10 minutes before 

the testing (fed condition). To minimize the number of fish used, data from the unmanipulated 

blind A. mexicanus in Experiment 1, which were fed ad lib approximately 3 to 5 hours before 

testing, were used as the post-absorption condition. 

In Experiment 3, we tested the effects of nonapeptides on shoaling in both blind and 

sighted A. mexicanus. Subjects were randomly selected from their home tanks and assigned to 

one of five treatment groups immediately prior to testing, receiving an injection of either isotocin 

(IT; Carbetocin acetate, MilliporeSigma Canada), AVT ([Arg⁸]-Vasotocin, VWR International), 

an IT antagonist (L-368,899 hydrochloride, Cayman Chemical), an AVT antagonist (Manning 

Compound, VWR International), or saline (0.9% physiological saline). We note that some of 

these compounds may have weak non-specific effects on other systems.  

Before injection, each fish was weighed by being placed into a beaker of water of known 

weight, and injection volumes were calculated individually. Fish were positioned upside-down in 

a slit within a damp sponge for injection. Drugs were administered via intraperitoneal injection 

using a 10 µL, 26-gauge syringe (Hamilton 701N). The entire procedure took approximately 30 

seconds per fish. Each group of five fish was injected sequentially and then transferred to a 

recovery tank for 10 minutes before testing, ensuring enough time for the neuropeptides to enter 

the brain (113-114). All drugs were administered at 10 μg/g body weight, with injection volumes 

between 2 and 8 μL. For blind A. mexicanus, five groups received saline, three received IT 

(denoted IT+), four received AVT (AVT+), three received the IT antagonist (IT-), and three 

received the AVT antagonist (AVT-). For surface fish, three groups received saline, four 

received IT+, three received AVT+, four received IT-, and four received AVT-. 

In Experiment 4, we tested the effects of higher hormone dosages in blind A. mexicanus 

only. Fish were randomly selected from their home tanks and assigned to one of four treatment 

groups immediately prior to testing, receiving either 20 μg/g or 40 μg/g doses of AVT+ or IT- 

following the same procedures as Experiment 3. Three groups received 20 μg/g of AVT, three 

received 40 μg/g of AVT, and five received 40 μg/g of IT-. Data from the saline-injected groups 

in Experiment 3 were used as a control. Our dosages were informed by previous research on 

nonapeptide administration in small fish species (114-116,122), as no previous studies have 

manipulated IT and AVT in A. mexicanus. 

Analysis 

Fish movements were tracked from videos using an automated tracker (IDTracker; 143), 

which provided the location of each fish in each frame. Data were then processed in R (144) to 

extract standard metrics of collective movement: the inter-individual distance (IID; the mean 



 

 

distance between an individual and all others, averaged across all fish), nearest-neighbor distance 

(NND; the distance between each fish and its nearest neighbor, averaged over all individuals), 

and polarization (the degree to which individuals are oriented in the same direction). These 

metrics are widely recognized as robust indicators of group cohesion and alignment (5,145). All 

distance measurements were converted from pixels to centimeters using a scaling factor derived 

from the arena’s known diameter of 60 cm.  

To assess whether fish were actively shoaling or ignoring each other, we created a null 

model in R to simulate random movement. We generated 10,000 iterations of random point 

distributions (five points per iteration) within the experimental arena, calculating IID, NND, and 

polarization values for each configuration. These randomly generated values served as a baseline 

for comparison with the observed experimental data. 

All statistical analyses were performed in Mathematica (v.12.0, Wolfram Technologies). 

Analyses of variance (ANOVA) were used to evaluate significant differences between species, 

experimental conditions, and hormonal treatments. One-way ANOVAs were applied to assess 

differences in IID, NND, and polarization between treatment groups or species. Two-way 

ANOVAs were used to examine interactions between morphs/species and treatment conditions 

(hormonal treatments, nutritional state). When the ANOVA indicated significant effects, post-

hoc tests were conducted, and a Bonferroni correction was applied to all tests. Comparisons of a 

group to the theoretical null model were conducted using T-tests. We additionally report the 

power of each test, using η2 for ANOVAs and Cohen’s D for T-tests. 

As we tracked our fish in every frame of the video (30 fps), the values of all our measures 

are not independent across frames, violating the assumptions of our analysis methods. To address 

this, before conducting any analyses, we down-sampled our data to one frame from each minute 

of each trial (i.e., we took 10 evenly spaced frames from the data for each trial), reducing the 

autocorrelation in the dataset. 

All data are available on our OSF repository, at 

https://osf.io/9jky4/?view_only=c8e10cd8b43c4e58b3d84d0de6f0d876. 

Results 

 

Experiment 1 

We found significant differences between all species or morphs on all measures of 

shoaling (Figure 1 A-C. Means ± SD in Table S1, post-hoc tests in Table S2. IID: F(2,197) = 

1216.4, p < 0.00001, η2 = 0.93; NND: F(2,197) = 927.7, p < 0.00001, η2 = 0.90; Polarization: 

F(2,197) = 233.1, p < 0.00001, η2 = 0.70), suggesting that blind A. mexicanus shoals are less 

polarized and looser than those of either zebrafish or sighted A. mexicanus, and sighted A. 

mexicanus form tighter and more polarized shoals than zebrafish. We additionally compared the 

https://osf.io/9jky4/?view_only=c8e10cd8b43c4e58b3d84d0de6f0d876


 

 

experimental data to our null distribution to test whether blind A. mexicanus were ignoring each 

other (means ± SD in Table S1). Both zebrafish and sighted A. mexicanus shoaled more tightly 

than predicted by the model (NND: zebrafish, T(52.7) = 5.13, p < 0.00001, Cohen’s D = 1.11; 

sighted A. mexicanus, T(50.9) = 6.90, p < 0.00001, D = 1.44. IID: zebrafish, T(62.1) = 6.97, p < 

0.00001, D = 1.45; sighted A. mexicanus, T(54.4) = 10.75, p < 0.00001, D = 2.23) but blind A. 

mexicanus maintained greater distances between individuals than predicted by the model (NND: 

T(53.8) = -3.8, p = 0.0004, D = 0.82. IID: T(58.1) = -8.9, p < 0.00001, D = 1.88), suggesting that 

they do not merely ignore but actively avoid each other. Zebrafish and sighted A. mexicanus 

groups were more polarized than the model (zebrafish: T(67.3) = -8.44, p < 0.00001, D = 1.72; 

sighted A. mexicanus: T(71.5) = -10.0, p < 0.00001, D = 2.02) but there was no difference in 

polarization between the model and blind A. mexicanus (T(56.8) = 0.26, p = 0.80, D = 0.05).  

 

Figure 1. Results of 

Experiments 1 and 2. 

Distribution plots of 

nearest neighbor 

distances (NND; A, D), 

inter-individual distances 

(IID; B, E), and 

polarization (C, F) for 

the different 

species/morphs in 

Experiment 1 (A-C) and 

the different feeding 

conditions in Experiment 

2 (D-F). Horizontal 

black lines indicate the 

mean of each 

distribution. Italic letters 

above or inside each 

distribution indicate 

statistical similarity. 

 

 

Distributions of polarization in both zebrafish and sighted A. mexicanus (Figure 1C) 

displayed a characteristic bimodality, indicating the presence of two kinds of shoaling 

(sometimes referred to as schooling and shoaling; 146), but no such distinction was evident in 

the polarizations of blind A. mexicanus. 

Experiment 2 

Hunger levels had a significant impact on shoaling behavior in blind cavefish (Figure 1 

D-F). Both hungry and recently fed fish shoaled less tightly than control fish (means ± SD in 

Table S1; post-hocs in Table S3. IID: F(2,177) = 10.34, p = 0.00006, η2 = 0.10; NND: F(2,177) = 



 

 

29.57, p < 0.00001, η2 = 0.25). Polarization also differed significantly across conditions 

(F(2,177) = 7.05, p = 0.001, η2 = 0.07), with fed fish showing higher polarization than hungry 

fish (Table S3). 

Experiment 3 

We found a significant main effect of morph and an interaction between morph and drug 

treatment but no main effect of drug treatment on both IID (Figure 2. Means ± SD in Table S1; 

post-hocs in Tables S4-S5. Morph: F(1, 350) = 6712, p < 0.00001, η2 = 0.94; drug: F(4, 350) = 

2.78, p = 0.03, η2 = 0.002; morph x drug: F(4, 350) = 16.79, p < 0.00001, η2 = 0.01) and NND 

(morph: F(1,350) = 6547, p < 0.00001, η2 = 0.94; drug: F(4,350) = 1.60, p = 0.17, η2 = 0.001; 

morph x drug: F(4,350) = 11.71, p < 0.00001, η2 = 0.007). These results suggest that AVT 

modulated the dynamics of shoaling in both A. mexicanus morphs, but in different directions. 

Blind A. mexicanus given AVT+ swam closer together while sighted A. mexicanus moved 

further apart. Reducing IT levels also moved blind A. mexicanus closer together. On polarization, 

we found main effects of both morph and drug, as well as an interaction (morph: F(1,350) = 650, 

p < 0.00001, η2 = 0.59; drug: F(4,350) = 15.0, p < 0.00001, η2 = 0.05; morph x drug: F(4,350) = 

10.04, p < 0.00001, η2 = 0.04), suggesting that IT+ greatly reduced polarization in sighted A. 

mexicanus and AVT- increased polarization in blind A. mexicanus shoals. 

Figure 2. Results of 

Experiment 3. Distribution 

plots of nearest neighbor 

distances (NND; A, D), 

inter-individual distances 

(IID; B, E), and polarization 

(C, F) for the blind (A-C) 

and sighted A. mexicanus 

(D-F) in Experiment 3. Ctrl 

= control, IT+ = isotocin, 

IT- = isotocin antagonist, 

AVT+ = vasotocin, AVT- = 

vasotocin antagonist. 

Horizontal black lines 

indicate the mean of each 

distribution. Asterisks above 

or inside each distribution 

indicate significant 

differences (p < 0.01) from 

the control condition. 

Experiment 4 

Since we found, in Experiment 3, that increasing AVT in blind A. mexicanus decreased 

the distances between them, we next examined whether how effect varied with dosage. 

Administering higher AVT+ doses (at 20 and 40 μg/g) in blind A. mexicanus resulted in 

significantly looser shoals compared to the control and 10 μg/g doses (Figure 3. Means ± SD in 



 

 

Table S1; post-hocs in Table S6. IID: F(3,146) = 15.49, p < 0.00001, η2 = 0.24; NND: F(3,146) = 

15.19, p < 0.00001, η2 = 0.24), that were also less polarized (F(3,146) = 4.28, p = 0.006, η2 = 

0.08). In other words, higher doses of AVT had the opposite effect on shoaling distances as the 

low dose administered in Experiment 3. We also administered a higher dose of IT-, as it similarly 

decreased distances between blind A. mexicanus in Experiment 3. Increased doses of IT- (40 

μg/g) led to significantly lower IID compared to the control group (F(2,127) = 13.36, p < 

0.00001, η2 = 0.17), but not NND (F(2,127) = 3.94, p = 0.022, η2 = 0.06), and had no effect on 

polarization (F(2,127) = 1.49, p = 0.23, η2 = 0.02). In other words, in contrast to AVT, higher IT- 

doses had the same effect as lower doses. 

 

Figure 3. Results of 

Experiment 4. 

Distribution plots of 

nearest neighbor 

distances (NND; A, D), 

inter-individual 

distances (IID; B, E), 

and polarization (C, F) 

for increasing 

concentrations of 

vasotocin (A-C) and an 

isotocin antagonist (D-

F) in Experiment 4. 

Horizontal black lines 

indicate the mean of 

each distribution. 

Asterisks above or 

inside each distribution 

indicate significant 

differences (p < 0.01) 

from the control 

condition. 

Discussion 

We compared the shoaling of blind Astyanax mexicanus with their surface-dwelling 

conspecifics and zebrafish, examining how nutritional state and neurohormonal modulation 

influence these behaviors. We found, unsurprisingly, that both sighted A. mexicanus and 

zebrafish formed cohesive shoals, maintaining smaller distances than would be expected by 

chance (Figure 1 A-B; Video S2), and displayed coordinated movement, as evidenced by high 

polarization values and bimodal distributions characteristic of shoaling behavior (Figure 1C; 

148). Sighted A. mexicanus formed tighter and more polarized shoals than zebrafish, possibly a 

response to more challenging ecological conditions. Blind A. mexicanus, in contrast, neither 

coordinated their movements (their polarization was identical to what would be expected by 

chance) nor formed shoals. Notably, they maintained significantly greater distances between 



 

 

individuals than would be expected if they were simply ignoring each other, suggesting active 

avoidance rather than social indifference (Video S1). 

We found that both food deprivation and feeding increased distances between blind A. 

mexicanus (Figure 1 D-E), and groups of recently fed fish were more polarized than fasted 

groups (Figure 1F). Blind A. mexicanus also moved closer together when we increased AVT or 

blocked the action of IT (Figure 2 A-B), though the former effect was reversed at higher 

concentrations of AVT (Figure 3 A-B). Interestingly, AVT had the opposite effect on sighted A. 

mexicanus, moving them further apart (Figure 2 D-E). Increasing IT caused a drastic reduction in 

the polarization of sighted A. mexicanus groups, and the polarization of blind A. mexicanus 

groups varied inversely with AVT: decreasing AVT increased polarization (Figure 2C), while 

high doses of AVT reduced it (Figure 3C).  

Our findings indicate that altering nutritional state or manipulating levels of IT and AVT 

in blind A. mexicanus affects group cohesion. Although the specific directions and magnitudes of 

these effects were not always as predicted (see below), the mere fact that hunger and hormonal 

changes impact shoal density suggests that blind A. mexicanus’s lack of shoaling stems more 

from a reduced motivation to aggregate than from an inability to detect conspecifics. This 

conclusion is further strengthened by our finding that groups of unmanipulated blind A. 

mexicanus do not simply ignore one another but actively avoid each other, directing their 

movements based on the positions of others but being repulsed from rather than attracted to 

them. Together, these results provide valuable insights into the evolutionary pressures that shape 

social behaviors. 

While blind A. mexicanus retain the ability to perceive their surroundings through their 

lateral line system, our results suggest that their motivation to engage in social behaviors has 

been lost since they split from the sighted morph. This behavioral shift likely reflects adaptation 

to cave environments where aggregation is disadvantageous due to resource scarcity and the 

absence of predators, as shoaling could increase risks of kleptoparasitism and competition (99). 

Similar shifts away from sociality have been observed in other species experiencing changes in 

predation pressures, including guppies (29). Solitary swimming may also allow the lateral line 

system to detect subtle water movements with greater precision by reducing interference from 

conspecifics, enhancing navigation (58,79,83,148). While blind A. mexicanus have often been 

described as ‘asocial’ (147), the term ‘anti-social’ may better capture their active avoidance of 

conspecifics.  

Our results also reveal that nutritional state modulates social behavior in blind A. 

mexicanus, which are constantly food-oriented (55,58). Contrary to our initial expectations, both 

fasted and fed groups maintained greater distances from each other than the control group 

(Figure 1 D-E), suggesting that both hunger and feeding may shift behavioral priorities toward 



 

 

foraging or digestion. This likely reflects an energy-conserving adaptation, advantageous in 

environments where food resources are both scarce and unpredictable (51,65-68). 

The social behaviors we observed in surface-dwelling A. mexicanus under increased AVT 

are consistent with findings in other social fish species, where AVT administration tended to 

promote social distancing or even aggression rather than cohesion (107,111-112,114,126). These 

findings align with AVT’s known role in enhancing territoriality and defensive behaviors. We 

found that increasing AVT increased cohesion in groups of blind A. mexicanus, but decreased it 

in sighted A. mexicanus. This, together with the reduced density of AVT-producing cells in the 

blind A. mexicanus brain (92), provides strong evidence that this molecule and its receptors have 

been the targets of strong selection since the two morphs diverged. However, we also found that 

higher AVT doses reversed the effect in blind A. mexicanus, causing reduced cohesion. This 

pattern of results suggests that neuropeptide dose-response relationships in this species may be 

U-shaped. Exploring these dose-response dynamics in detail remains an interesting direction for 

future research. Higher AVT doses may have been necessary to elicit a comparable response to 

that seen in sighted A. mexicanus with lower doses, suggesting reduced sensitivity to AVT in the 

blind morph, possibly due to variations in the density of AVT-producing neurons. In either case, 

as AVT is closely involved in social cognition in a wide range of species, changes in the AVT 

system may largely be responsible for having reversed how blind A. mexicanus react to 

conspecifics, replacing attraction with repulsion. 

The role of IT in modulating social behavior also differed between the two morphs. In 

blind A. mexicanus, blocking IT receptors decreased distances between individuals, partially 

restoring shoaling-like behavior. This suggests that IT typically functions to suppress social 

cohesion in blind A. mexicanus (Figure 2 A-B). No such effect was observed in sighted fish; 

however, increasing IT decreased their polarization. These findings contrast with research on 

other fish species, such as guppies and goldfish, as well as studies on OT in mammals, where this 

nonapeptide often enhances social bonding, facilitating group cohesion (133-140).  

However, our results from blind A. mexicanus align with those seen in male N. pulcher, 

where IT administration inhibits grouping behavior, while IT antagonists increase group 

cohesion (120). These cichlids have higher levels of IT and lower levels of AVT than closely 

related less social species (125,149). Although their social behaviors contrast (blind A. 

mexicanus are solitary while N. pulcher are social), their neurohormonal responses to IT 

manipulation, as well as their baseline hormone levels, reveal notable similarities. This suggests 

that, despite divergent ecological demands, certain neuroendocrine systems may share 

evolutionary pathways, shaping distinct social strategies through similar mechanisms. 

One possible explanation for the IT antagonist’s increasing proximity in blind A. 

mexicanus is the social salience hypothesis, which suggests that OT/IT increases the salience of 

social stimuli (129-131). In blind A. mexicanus, where shoaling may be maladaptive, social 



 

 

stimuli may be perceived as aversive, leading them to actively avoid conspecifics. Blocking IT, 

however, may reduce their sensitivity to these aversive social signals, leading to an increase in 

proximity, as we observed in our IT-antagonized blind A. mexicanus groups.  

Conclusion 

Neuropeptides such as AVP/AVT and OT/IT play a complex role in shaping social 

behaviors across taxa. Our findings reveal that the solitary nature of blind A. mexicanus is not 

due to an inability to detect conspecifics but reflects a decreased motivation to maintain social 

proximity. This highlights how blind A. mexicanus have adapted their social behavior to their 

cave environments, where predators are absent and competition for scarce resources favors 

solitary foraging (51). The contrasting responses to AVT in blind and surface A. mexicanus 

suggest that changes in the AVT system may have played a major role in restructuring social 

behavior since these morphs diverged. AVT enhances social cohesion in blind A. mexicanus, 

whereas it promotes social distancing in the sighted morph, as it does in other social fish species 

(107,126). Future work could profitably address the neural and molecular mechanisms by which 

these systems appear to have quickly diverged in the two morphs (e.g., 92). 

Previous QTL studies have mapped loci associated with schooling in A. mexicanus, but 

have not identified AVT- or IT-related genes as part of this species’ cave-specific adaptations 

(62). In other fish species, AVT or AVT-receptor knockouts show modified social behaviors 

such as aggression, courtship and mating (150). Investigating whether AVT- and IT-related 

genes are linked to schooling in A. mexicanus could clarify whether selection has directly acted 

on these genes during cave adaptation. 

Overall, these findings not only shed light on the evolution of social behavior in cavefish 

but have broader implications for understanding how environmental pressures shape sociality. 

Our ability to modulate social behaviors through hormone administration suggests that similar 

mechanisms might drive the evolution of new social dynamics in other species experiencing 

drastic ecological changes. For instance, intense fishing pressures can select against shoaling in 

marine populations, leading to social shifts that mirror those seen in blind A. mexicanus (151). 

Further exploration of these neurohormonal systems will improve our ability to predict 

behavioral responses to shifting ecosystems, including those impacted by human activity, 

ultimately aiding conservation efforts and the management of species under pressure.  
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Supplementary Information 

Table S1. Means of all measures in all experiments. The table gives the mean measure (IID or 

NND, in cm; Polarization in unitless values) for each condition in each experiment. The table is 

divided by experiment (1-4). AM = A. mexicanus. 

Experiment 1 (comparison of zebrafish, sighted AM, blind AM, and theoretical null model): 

 Theory null Blind AM Sighted AM Zebrafish 

NND (cm) 10.61 ± 6.40 12.80 ± 9.39 3.48 ± 2.45 4.96 ± 4.69 

IID (cm) 19.34 ± 6.53 26.42 ± 7.62 6.57 ± 3.31 10.06 ± 6.41 

Polarization 0.40 ± 0.20 0.40 ± 0.20 0.72 ± 0.24 0.66 ± 0.25 

Experiment 2 (comparison of fed and hungry blind AM [compared in the text to control data 

from Experiment 1]): 

 Hungry Fed 

NND (cm) 14.50 ± 8.79 14.24 ± 8.81 

IID (cm) 27.85 ± 7.84 27.66 ± 7.80 

Polarization 0.39 ± 0.20 0.43 ± 0.21 

Experiment 3 (comparison of drug effects on blind and sighted AM): 

Blind AM Saline IT+ IT- AVT+ AVT- 

NND (cm) 13.56 ± 3.92 13.75 ± 3.95 12.75 ± 3.94 12.67 ± 3.70 13.34 ± 4.03 

IID (cm) 26.67 ± 4.92 27.01 ± 4.53 24.84 ± 4.79 24.72 ± 4.97 26.14 ± 5.24 

Polarization 0.41 ± 0.19 0.41 ± 0.19 0.41 ± 0.20 0.40 ± 0.20 0.45 ± 0.20 

Sighted AM  

NND (cm) 3.79 ± 1.73 3.50 ± 1.53 3.94 ± 1.69 4.59 ± 1.78 3.31 ± 1.19 

IID (cm) 7.24 ± 3.50 6.95 ± 2.98 7.69 ± 3.71 9.53 ± 4.50 6.23 ± 2.44 

Polarization 0.74 ± 0.25 0.55 ± 0.25 0.71 ± 0.24 0.68 ± 0.26 0.71 ± 0.25 

[continued on next page] 



 

 

Experiment 4 (comparison of higher doses of AVT+ and IT- on schooling in blind AM 

[compared in the text to saline and 10 μg/g data from Experiment 3]): 

 AVT+ @ 20 μg/g AVT+ @ 40 μg/g IT- @ 40 μg/g 

NND (cm) 13.59 ± 7.79 14.64 ± 9.05 12.87 ± 7.57 

IID (cm) 25.91 ± 6.96 28.45 ± 7.66 24.21 ± 7.00 

Polarization 0.39 ± 0.20 0.38 ± 0.20 0.40 ± 0.20 

 

 

Table S2: ANOVA Post-hoc test results for Experiment 1. Post-hoc tests were run using the 

Bonferroni correction. Each cell gives the T statistic for the test along with a p-value and the 

value of Cohen’s D. Each sub-table gives results for a different measure (IID, NND, or 

Polarization). AM = A. mexicanus. 

IID Blind AM Sighted AM 

Sighted AM T(124.1) = -53.1, p < 0.00001, D = 

9.11 

 

Zebrafish T(138) = -35.2, p < 0.00001, D = 5.96 T(114.7) = 8.35, p < 0.00001, D 

=1.42 

NND  

Sighted AM T(113.4) = -41.7, p < 0.00001, D = 

7.06 

 

Zebrafish T(138) = -31.0, p < 0.00001, D = 5.24 T(120.4) = 7.26, p < 0.00001, D = 

1.24 

Polarization  

Sighted AM T(96.0) = -20.4, p < 0.00001, D = 3.70  

Zebrafish T(118.5) = -18.4, p < 0.00001, D = 

3.10 

T(128) = -3.00, p = 0.004, D = 0.53 

 

  



 

 

Table S3: ANOVA Post-hoc test results for Experiment 2. Post-hoc tests were run using the 

Bonferroni correction. Control data are taken from Experiment 1. Each cell gives the T statistic 

for the test along with a p-value and the value of Cohen’s D. Each sub-table gives results for a 

different measure (IID, NND, or Polarization). AM = A. mexicanus. 

IID Hungry Fed 

Control T(128) = -4.06, p = 0.00008, D = 0.71 T(118) = -3.57, p = 0.0005. D = 0.66 

Fed T(108) = -0.41, p = 0.69, D = 0.08  

NND  

Control T(128) = -6.92, p < 0.00001, D = 1.22 T(118) = -5.76, p < 0.00001, D = 1.07 

Fed T(108) = -0.95, p = 0.34, D = 0.18  

Polarizatio

n 

 

Control T(128) = 1.45, p = 0.15, D = 0.25 T(118) = -2.35, p = 0.02, D = 0.43 

Fed T(108) = -4.05, p = 0.0001, D = 0.77  

Table S4: ANOVA Post-hoc test results for Experiment 3, for comparisons between strains 

(blind and sighted). Post-hoc tests were run using the Bonferroni correction. Each cell gives the 

T statistic for the test along with a p-value and the value of Cohen’s D. Each row gives results 

for a different measure (IID, NND, or Polarization [POL]). AM = A. mexicanus. 

 Saline IT+ IT- AVT+ AVT- 

IID T(78) = 42.0,  

p < 0.00001, 

D = 9.71 

T(68) = 47.47, 

P < 0.00001, 

D = 11.46 

T(68) = 29.24, 

P < 0.00001, 

D = 7.06 

T(68) = 23.83, 

P < 0.00001, 

D = 5.75 

T(45.4) = 

44.59, 

P < 0.00001, 

D = 11.48 

NND T(78) = 42.3, 

P < 0.00001, 

D = 9.77 

T(68) = 42.00, 

P < 0.00001, 

D = 10.12 

T(42.2) = 

23.76, 

p < 0.00001, 

D = 6.20 

T(67.3) = 

34.77, 

P < 0.00001, 

D = 7.95 

T(38.5) = 

36.54, 

P < 0.00001, 

D = 9.69 

POL T(34.2) = 

13.34, 

P < 0.00001, 

D = 3.72 

T(61.3) = 6.52, 

P < 0.00001, 

D = 1.45 

T(51.6) = 

13.57, 

P < 0.00001, 

D = 2.93 

T(34.7) = 

11.18, 

P < 0.00001, 

D = 3.02 

T(63.7) = 

11.18, 

P < 0.00001, 

D = 2.50 

  



 

 

Table S5: ANOVA Post-hoc test results for Experiment 3, for comparisons between saline and 

the drug treatment conditions. Post-hoc tests were run using the Bonferroni correction. Each cell 

gives the T statistic for the test along with a p-value and the value of Cohen’s D. Each row gives 

results for a different measure (IID, NND, or Polarization). The top part of the table gives results 

for blind AM, the bottom for sighted AM. Each drug condition is being compared to the saline 

condition. AM = A. mexicanus. 

Blind IT+ IT- AVT+ AVT- 

IID T(78) = -0.75, 

p = 0.45, 

D = 0.17 

T(78) = 3.70,  

p = 0.0004, 

D = 0.85 

T(88) = 4.35, 

p = 0.00004, 

D = 0.92 

T(78) = 1.09, 

p = 0.28, 

D = 0.25 

NND T(78) = -0.80, 

P = 0.42, 

D = 0.19 

T(40.3) = 2.17, 

P = 0.04, 

D = 0.57 

T(88) = 3.79, 

P = 0.0003, 

D = 0.80 

T(78) = 0.72, 

P = 0.47, 

D = 0.17 

Polarization T(78) = 0.16,  

P = 0.87, 

D = 0.04 

T(78) = -0.07, 

P = 0.94, 

D = 0.02 

T(88) = 0.85, 

P = 0.40, 

D = 0.18 

T(46.7) = -2.72, 

P = 0.009, 

D = 0.68 

Sighted  

IID T(68) = 0.64, 

p = 0.52, 

D = 0.15 

T68) = -0.79, 

p = 0.43, 

D = 0.19 

T(58) = -3.37, 

p = 0.001, 

D = 0.87 

T(68) = 2.41, 

p = 0.02, 

D = 0.58 

NND T(61.9) = 1.23, 

P = 0.22, 

D = 0.30 

T(68) = -0.67, 

P = 0.50, 

D = 0.16 

T(58) = -3.64, 

P = 0.0006, 

D = 0.94 

T(68) = 2.46, 

P = 0.02, 

D = 0.59 

Polarization T(68) = 6.51, 

P < 0.00001, 

D = 1.57 

T(68) = 0.76, 

P = 0.45, 

D = 0.18 

T(58) = 1.81, 

P = 0.07, 

D = 0.47 

T(68) = 0.90, 

P = 0.37, 

D = 0.22 

 

  



 

 

Table S6. ANOVA Post-hoc test results for Experiment 4, comparing each drug concentration to 

saline (saline results taken from Experiment 3). Post-hoc tests were run using the Bonferroni 

correction. Each cell gives the T statistic for the test along with a p-value and the value of 

Cohen’s D. Each row gives results for a different measure (IID, NND, or Polarization). AM = A. 

mexicanus. 

 AVT+ @ 20 μg/g AVT+ @ 40 μg/g IT- @ 40 μg/g 

IID T(78) = 1.26, 

P = 0.21, D = 0.29 

T(45.8) = -3.12, 

P = 0.003, D = 0.79 

T(86) = 5.06, 

P < 0.00001, D = 

1.01 

NND T(78) = -0.36,  

P = 0.72, D = 0.08 

T(78) = -4.10, 

P = 0.0001, D = 0.95 

T(87.3) = 2.62, 

P = 0.01, D = 0.52 

Polarization T(78) = 2.47, 

P = 0.02, D = 0.57 

T(78) = 3.03, 

P = 0.003, D = 0.70 

T(98) = 1.53, 

P = 0.13, D = 0.31 

 

Figure S1. Frame of video from a trial of blind A. mexicanus in Experiment 1. The tank was 60 

cm in diameter. 

  

 

 


