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Summary 

Though we cannot directly assess consciousness in non-human animals, an increasing number of 

researchers are adopting the marker approach – amassing evidence of behaviors that may indicate 

consciousness to determine which species are likely to be conscious. Here, I review the evidence for 

behavioral markers of sentience (also called phenomenal consciousness) in reptiles, a historically 

understudied class. Reptiles show some evidence of experiencing pain, stress, and pleasure, 

demonstrate active sleep and open-ended associative learning, display complex social cognition, and 

appear capable of self-recognition. However, in all these areas, the behaviors considered key indicators 

of sentience have often not been tested. There is a need for much more research on all these behaviors 

and their mechanisms in a wider range of reptile species. 

  



Introduction 

Students of comparative psychology have avoided discussing consciousness in non-human animals, even 

as the study of other cognitive processes has flourished (Shettleworth, 2010a). The reason for this is not, 

I believe, our lack of direct access to consciousness, as this is equally true of all cognition. Rather, the 

key distinction is that most cognitive processes can be defined functionally, allowing us to identify 

behavioral markers that can be used to report on the presence or absence of those processes. If the 

cognitive process called memory involves the creation and use of representations of environmental 

features, then an animal will be able to use a representation of some features of a maze, for example, to 

solve that maze faster on repeated exposure to it. The behavior of the animal, appropriately tested, can 

definitively indicate the presence or absence of a particular type of functionally specified cognition.  

Unfortunately, there is no consensus on what consciousness is for, even in humans (Ludwig, 2022). This 

has made it difficult for comparative psychologists to identify appropriate behavioral markers. Since we 

don’t know what consciousness contributes to cognition, it is possible to construct, for any behavior, a 

convincing “killjoy” explanation (Dennett 1983; Shettleworth, 2010b) that does not rely on 

consciousness as a mechanism. 

Progress in studying animal consciousness must therefore rely on a different methodology than the one 

we use for other forms of cognition. Here, I adopt the marker approach (Birch, 2020), focusing on 

behaviors that might, under some reasonable theory of consciousness, serve as evidence for its 

existence (Burghardt, 1985, reviews the history of this approach). The strength of the marker approach 

is enhanced by assembling a wide range of possible markers: if an animal displays many behaviors that 

might require or be facilitated by consciousness, then we should be more likely to believe that the best 

explanation for those behaviors includes consciousness as an intervening variable. This approach is 

congruent with Birch’s facilitation hypothesis (Birch, 2020), and is closely aligned with the recent New 

York Declaration on Animal Consciousness (Andrews et al., 2024).  

There are many different types of consciousness. Some, like the internal monologue that language-

capable humans have, are a priori unlikely in most animals and would be almost impossible to identify 

from (non-verbal) behavioral markers. Here, I focus on the simplest form of conscious awareness, 

sometimes called sentience or phenomenal consciousness: the ability to have an internal, possibly 

valenced, mental experience or feeling (Block, 1995; Browning & Birch, 2020). 

There is much debate on which behaviors might serve as good markers for non-human sentience. Some 

have suggested selecting behaviors that are always accompanied by conscious awareness in humans 

(Mason & Lavery, 2022) or focusing on specific kinds of learning (Ginsburg & Jablonka, 2021). The 

paucity of research in most areas of reptile cognition serves as an additional restriction on the criteria 

that can be considered – we simply have no information on whether, for example, any reptile can 

acquire cross-modal associations (Birch, 2020). In light of this, I present evidence on a wide range of 

potential markers, including behaviors that have been used to support attributions of sentience in other 

taxa (such as the presence of active sleep; Tononi, Boly & Cirelli, 2024), that only occur in the presence 

of consciousness in humans (like complex associative learning; Mason & Lavery, 2022), that have been 

taken to indicate more sophisticated forms of consciousness (like self-recognition; McFarland, 2009), as 

well as indicators of states such as pain or pleasure. I also discuss social complexity, for reasons 

discussed below. I exclude markers for which there is no reptilian evidence (positive or negative). For 

example, though judgment bias tests are considered excellent markers of affect, no demonstrations of 



the paradigm exist in any reptile, as far as I am aware (Bethell, 2015). Wherever possible, I present both 

behavioral and neurophysiological evidence for each marker.  

All current approaches to animal consciousness, perhaps unavoidably, assume that it will look a lot like 

human consciousness. Whether in our choice of behavioral markers, the neuroanatomy we think is 

indicative of sentience, or the types of internal experience we posit, our approach is always 

anthropocentric. However, it is unlikely that consciousness in other animals is identical to ours. A central 

tenet of comparative psychology is that animals evolve those cognitive skills that improve their fitness, 

suggesting that cognition should vary in a systematic way with ecology (Vonk & Shackleford, 2012). Even 

if sentience originated in the distant past, it will have subsequently been shaped in different ways by the 

different selective pressures operating on different species (Nagel, 1974). Reptiles – mostly carnivorous 

ectotherms that have scales and perceive their world primarily via odor – inhabit very different 

environments from ourselves, and we should expect their sentience (if they are sentient) to be 

correspondingly different from ours. 

Figure 1 presents a simplified phylogeny of the amniotes (the group of animals that includes reptiles, 

birds, and mammals). As the figure makes clear, birds are reptiles (Modesto & Anderson, 2004): an 

alligator is more closely related to a chicken than either of them is to a snake, for example. This means 

that, to the extent that phylogenetic arguments provide good evidence for cognitive abilities, data on 

bird behavior are relevant to the consideration of reptile sentience. If we accept that birds and 

mammals are likely sentient (Low et al., 2012), then either sentience evolved at least twice or it is 

ancestral to all amniotes, including reptiles (or it is ancestral to amniotes but was independently lost in 

the several non-avian reptilian lineages). 

Figure 1 additionally demonstrates how ancient the reptilian class is. Snakes and lizards, for example, 

diverged from each other at around the same time as eutherians (such as humans) diverged from 

monotremes (such as the duck-billed platypus). Crocodilians and turtles (and birds) split from the rest of 

the reptiles about 100 million years before that. Thus, the various reptile groups have been evolving 

apart from each other, in an incredibly diverse range of habitats, for a very long time. This should make 

us wary of drawing broad conclusions about sentience in the entire class based on existing research on a 

small number of species. Much more work is required to fill in these gaps in our knowledge. 

Markers of sentience in reptiles 

Indicators of pain 

Pain is the canonical valenced internal experience and the one most often discussed, possibly because 

animals’ ability to suffer has far-reaching moral implications (Shevlin, 2020; De Waal & Andrews, 2022). 

As a result, behavioral markers of pain have been identified, including motivational trade-offs, guarding 

of injured body parts, preferring or self-administering analgesics, and learning how and where to avoid 

painful stimuli (Sneddon et al., 2014; Crump et al., 2022). Though there are anecdotal reports from 

veterinarians and zookeepers attesting that they can feel pain (Ayers, 2016), there is surprisingly little 

controlled empirical work on reptile pain, and there are no demonstrations of any of these markers in 

any reptile (as far as I know). 

For example, I am aware of only one study demonstrating motivational trade-offs in a reptile, though 

not involving pain: green iguanas (Iguana iguana) will leave a warm shelter in order to obtain a 



preferred food at a colder location (Balasko & Cabanac, 1998). Iguanas will also inhibit their reactions to 

potentially painful stimuli when observed (by a human), possibly due to stress-induced immobility 

(Fleming & Robertson 2012). A similar effect is observed in rats exposed to cat odor (Lester & Fanselow 

1985). 

Research veterinarians, attempting to identify effective analgesics for use in reptiles, have tested several 

species on their responses to presumably painful stimuli, and how various analgesics affect those 

responses. Much of this research has been conducted using the Hargreaves test (Hargreaves et al., 

1988), adopted without modification from mammalian pain research. In this test, a beam of intense IR 

light is focused on an animal’s limb or other body-part, rapidly heating it, and the animal’s latency to 

withdraw from the stimulus is measured. In mammals, analgesics reliably increase the maximal heat an 

animal will tolerate (e.g., Foley, Liang and Chrichlow, 2011). There is some controversy around using a 

heat-based test in ectotherms, who may have fewer or more unevenly distributed receptors for heat 

than mammals (Mosley, 2011), but the test continues to be used because it appears to work. Other 

analgesic tests have measured reactions to other nociceptive stimuli (electrical stimulation, capsaicin or 

formalin injections), post-operative behavioral changes (James et al., 2017; Kinney, Johnson and Sladky, 

2011), or physiological measures (such as heart rate), with largely congruent results. Some researchers 

may have induced analgesia by cooling reptiles when attempting to anesthetize them for surgery (e.g., 

Greenberg, 1977). 

Using these methods, a variety of substances that function as analgesics in mammals have been tested 

on reptiles, yielding – to date – a confusing and inconsistent picture. For example, many effective 

analgesics operate by stimulating the opioid system, and most vertebrates share several classes of 

opioid receptor. Mu-opioid receptor agonists, such as morphine or fentanyl, appear to have analgesic 

effects in turtles (red-eared sliders: Sladky, Miletic and Paul-Murphy, 2007, Kinney et al., 2011, Baker, 

Sladky and Johnson, 2011, Mans et al., 2012, Sladky, Kinney and Johnson, 2009; Speke’s hinge-backed 

tortoise: Wambugu et al., 2010), crocodiles (Kanui & Hole, 1992) and lizards (bearded dragons: Sladky, 

Kinney and Johnson, 2008, Couture et al., 2017; tegus: Leal et al., 2017; green iguanas: Greenacre et al., 

2006; anoles: Mauk et al., 1981), but not snakes (corn snakes: Sladky et al., 2008; ball pythons: Kharbush 

et al., 2017). However, Kappa-opioid receptor agonists do not appear to decrease pain in turtles (red-

eared sliders: Sladky et al., 2007, 2009) or lizards (bearded dragons: Sladky et al., 2008; green iguanas: 

Fleming & Robertson, 2006 [but see Greenacre et al., 2006]; tegus: Leal et al., 2017) but may work in 

snakes (positive evidence in corn snakes: Sladky et al., 2008; negative evidence in ball pythons: Olesen et 

al., 2008). Both alpha2-adrenoceptor agonists and antagonists increase pain tolerance in turtles (Speke’s 

hinge-backed tortoise: Makau et al., 2016; marsh terrapin: Makau et al., 2014), snakes (ball pythons: 

Bunke, Sladky and Johnson, 2018, Karkus, Sladky and Johnson, 2021) and lizards (tegus: Bisetto, Melo 

and Carregaro, 2018). Non-steroidal anti-inflammatory drugs (NSAIDs) appear to have no effect on pain 

in ball pythons (Olesen et al., 2008). 

The preceding paragraph represents, as far as I can tell, the entirety of the empirical literature on 

analgesia in reptiles. A total of 10 species are represented (4 lizards, 3 turtles, 2 snakes, 1 crocodilian), in 

a class that contains in excess of 10,000. As much of this research has been conducted for the benefit of 

veterinary practice, little is known about the mechanisms that underlie these effects. The wide variation 

in responses may result from anatomical differences (e.g., in receptor densities; Mosley, 2011), differing 

behavioral tendencies in the expression of pain, or physiological differences in, for example, sedative 

effects of the drugs (Perry and Nevarez, 2018). It is also worth noting that none of these results 



demonstrate seeking or self-administering of analgesics, nor do the paradigms used test for learning 

about painful stimuli. In other words, none of the data at hand speak to the criteria philosophers have 

identified as good markers for the experience of pain. The best we can say is that reptiles display 

nociception (McKune et al., 2015).  

Indicators of stress 

Pain is not the only form of negative affect, and there is some evidence for stress or anxiety in reptiles 

(reviewed by Gangloff and Greenberg, 2023). Being handled or restrained appears to be stress-inducing 

for reptiles, as evidenced by increased corticosterone levels in bearded dragons (Pogona vitticeps; 

Stockley, Wilkinson and Burman, 2020), green iguanas (Kalliokoski et al., 2012), tree lizards (Urosaurus 

ornatus; Moore, Thompson and Marler, 1991), ball pythons (Kreger & Mench, 1993), Western diamond-

backed rattlesnakes (Crotalus atrox; Schuett et al., 2004), alligators (Alligator mississippiensis; Lance & 

Lauren, 1984), and Kemp’s Ridley sea turtles (Lepidochelys kempii; Gregory & Schmid, 2001), but not in 

green anoles (Anolis carolinensis; Borgmans et al., 2021) or blue-tongued skinks (Tiliqua scincoides; 

Kreger & Mench, 1993). High housing densities, which may be stressful, also increase corticosterone 

levels in some female side-blotched lizards (Uta stansburiana; Comendant et al., 2003) and alligators 

(Elsey et al., 1990). Iguanas increase their heart rate when handled (Cabanac & Cabanac, 2000) and both 

dwarf tegus (Callopistes maculatus; Cabanac & Gosselin, 1993) and wood turtles (Clemmys insculpta; 

Cabanac & Bernieri, 2000) display an “emotional fever” – increasing their internal temperature by 

preferring a warmer location – after being handled (an effect also observed in rodents and humans; 

Briese & deQuijada, 1970). 

Red-footed tortoises (Geochelone carbonaria), but not bearded dragons, habituate more slowly to novel 

than familiar environments, presumably because the former are stressful (Moszuti, Wilkinson and 

Burman, 2017). Brown wall-lizards (Podarcis liolepis) provided with conspecific-scented pieces of paper 

decrease their escape behaviors, perhaps as a result of decreased anxiety (Londoño et al., 2018). Male 

green anoles show many behavioral signatures of stress, including changes in body color that correlate 

with corticosterone levels (Greenberg, 2002). Reactions to environmental enrichment, reviewed in the 

next section, may also expose stress or anxiety responses induced by deprivation. 

These data paint a more cohesive picture than the work on pain and analgesia reviewed above, and 

strongly suggest that reptiles can experience of stress, even displaying hormonal profiles very similar to 

those seen in stressed mammals (Gangloff and Greenberg, 2023).  

Indicators of pleasure 

In addition to pain, sentient animals might also have the capacity for positively valenced feelings, like 

pleasure or contentment. There is far less research on this topic, but some reptiles display behaviors 

that might reflect positive affect in their responses to enrichment. Reptiles will often show a preference 

for an object, conspecific, or environment, and these may serve as indicators of motivation (to choose) 

or desire (Kirkden and Pajor, 2006). Some reptiles exhibit play, which has been considered a good 

marker for positive affect or “joy” (Nelson et al., 2023).  

The effects of physical enrichment – providing animals stimulating environments that allow for 

performing natural behaviors (Young, 2013) – have been tested in several reptiles. Corn snakes 

(Pantherophis guttatus; Hoehfurtner et al., 2021a) and Western hognose snakes (Heterodon nasicus; 



Nagabaskaran, Skinner and Miller, 2022) show a preference for enriched over barren enclosures when 

given a choice. Corn snakes prefer a larger cage in which they can fully stretch out over a smaller one 

(Hoehfurtner et al., 2021b). Galapagos turtles (Chelonoidis nigra) choose specific enrichments over 

others (Mehrkam & Dorey, 2014) and Eastern box turtles (Terrapene carolina) prefer enriched 

environments and show a decrease in stress-related behaviors and physiology when housed in one 

(Case, Lewbart and Doerr, 2005). However, providing climbing enrichment to the semi-arboreal Eastern 

fence lizard (Sceloporus undulatus) appears to have no effect on either behavioral or physiological 

measures of stress (Rosier and Langkilde, 2011), and increasing cage size or structural complexity has no 

effect on behavior or physiology in green anoles (Borgmans et al., 2018, 2019). Housing under enriched 

conditions also improves some aspects of cognition in ratsnakes (Elaphe obsoleta; Almli & Burghardt, 

2006) and corn snakes (Nagabaskaran et al., 2021) and, in western hognose snakes, living under 

enriched conditions increases brain size (Nagabaskaran et al., under review), an effect also seen in other 

taxa (Diamond, 2001). 

Leopard geckos (Eublepharis macularius) engage with some enrichment items added to their cages more 

than expected by chance, and this increases the diversity of behaviors they display – a possible mark of 

positive affect – but has no effect on the incidence of abnormal repetitive behaviors (which may 

themselves be indicative of negative affect; Bashaw et al., 2016). Repetitive behaviors also decrease in 

turtles offered enrichment objects (Therrien et al., 2007). 

Several reptile species have been shown to engage in play – performing non-functional behaviors with 

objects or conspecifics (Burghardt, 2005; Dinets, 2023). Nile softshell turtles (Trionyx triunguis) play with 

objects floating in the water and this reduces repetitive and self-injurious behavior (Burghardt, Ward 

and Rosscoe, 1996). Sea turtles (Chelonia mydas) have also been observed playing with floating objects 

(Mann & Mellgren, 1998). Several studies have observed play behaviors with objects and with humans 

in monitor lizards (Varanid spp.; Burghardt et al., 2002; Khandakar et al., 2020), including repeatedly 

shredding and then scattering leaves without consuming them (Kane, Davis and Michaels, 2019). 

American alligators (Lazell & Spitzer, 1977) and Cuvier’s dwarf caimans (Paleosuchus palpebrosus; 

Heinbuch & Wiegman, 2000) have both been observed playing with and in falling water.  

Though these examples are suggestive, the essence of play ensures that such reports remain anecdotal 

and investigations of the motivations underlying the behaviors are almost never undertaken (though 

this is also true of studies on play in mammals). Nonetheless, the presence of play-like behaviors in 

reptiles, demonstrating a preference for certain objects or activities over others, along with their 

preferences for specific (enriched) environments, suggest that they are capable of wanting things 

(Browning & Veit, 2023) and may experience joy (Nelson et al., 2023).  

Sleep 

Most animals spend significant portions of their lives asleep (Miyazaki, Liu and Hayashi, 2017). In 

mammals and birds, sleep occurs in two distinct forms: slow-wave and active (also called paradoxical or 

rapid eye movement [REM]), which are distinguished on the basis of both behavioral and 

neurophysiological characteristics. Importantly, it has been suggested that active sleep is a conscious 

state, at least in humans (Chow et al., 2013). 

Sleep is defined behaviorally as a state of immobility during which animals are less responsive to 

external stimuli (Siegel, 2008). Slow-wave sleep is characterized by reduced EEG frequency and activity, 



especially in the brainstem. During active sleep, however, EEG activity is similar to waking, and is 

accompanied by distinct behavioral effects like loss of muscle tone and rapid movements of the eyes 

(Siegel, 2008). Though definitions of sleep (both behavioral and physiological) have been criticized as 

mammal-centric (Libourel & Herrel, 2015), reptiles from many groups display states seemingly 

analogous to slow-wave sleep (see Ayala-Guerrero & Mexicano, 2008). 

Several reptile species exhibit two different phases of sleep, and some of them show eye movements 

during one of those phases (reviewed in Libourel & Herrel, 2015). However, the EEG patterns that 

accompany this phase of sleep vary across reptiles and, in many cases, are nothing like those observed 

in mammals and birds (Flanigan, Wilcox & Rechtschaffen, 1973; Libourel & Barrillot, 2020). For example, 

eye movements during sleep have been recorded in turtles and lizards, but often in the absence of 

changes in EEG patterns that match mammalian REM sleep (Libourel & Herrel, 2015). Alternation 

between states similar to both phases of mammalian sleep has been observed in bearded dragons 

(Shein-Idelson et al., 2016). A similar alternation of states has been seen in tegus (Salvator merianae), 

though the exact EEG patterns differ from those seen in any other species (Libourel et al., 2018). 

Administering fluoxetine, a serotonin reuptake inhibitor, decreases the duration of active sleep in tegus, 

an effect also observed in mammals (Libourel et al., 2018). Many reptile species display large amplitude 

spikes in their EEG during sleep, which do not correspond well to any mammalian or avian sleep stage 

(Flanigan, Wilcox & Rechtschaffen, 1973). 

The complications in attributing mammalian-like active sleep, a putatively conscious state, to reptiles 

are primarily due to its being defined based on both behavioral and neurophysiological factors. Reptilian 

brains are structured differently from mammalian or avian brains and their EEG patterns are 

correspondingly different, presumably even when performing the same function (there are ongoing 

debates about the function of active sleep, even in mammals; Siegel, 2011). For example, bearded 

dragons alternate between the two phases of sleep they show with a clock-like regularity unheard of in 

mammals or birds (Shein-Idelson et al., 2016). Some studies of turtles have failed to find differences in 

EEG between waking and sleeping states altogether, and many reptiles fail to show an increase in sleep 

duration after being sleep-deprived (Libourel & Herrel, 2015; but see Flanigan, Wilcox & Rechtschaffen, 

1973). These variations likely result from ecological differences within reptiles and between them and 

mammals, in ways that we have not yet started to unravel. Nonetheless, at least some reptiles display 

two phases of sleep with differing EEG signatures, and exhibit eye movements during one of them, 

suggesting they experience a state analogous to mammalian REM. 

Learning 

One commonly cited marker for sentience is the capacity for ‘complex’ learning. For example, Ginsburg 

and Jablonka (2021) propose that sentience emerged with the evolution of Unlimited Associative 

Learning, a term they use to refer to learning that is open-ended and supports associating compound or 

novel stimuli, second-order associations, trace conditioning (in which there is a temporal gap between 

the two events to be associated), and rapid reversal (Birch, Ginsburg and Jablonka, 2020). It has also 

been suggested that instrumental conditioning entails consciousness, at least in humans (Skora et al., 

2021). Unfortunately, as for other markers, there is little research on these kinds of complex learning in 

reptiles, though there is a large and growing literature on their general ability to learn (Szabo, Noble and 

Whiting, 2021).  



Many reptile species show associative learning, both classical and instrumental, including associating 

novel cues such as colored discs or arms of a maze with various rewards (reviewed in Burghardt, 1977, 

Wilkinson and Huber, 2012, and Szabo et al., 2021). However, none of these experiments employed a 

trace conditioning preparation (i.e., in all cases, the conditioned stimulus was still present when the 

unconditioned stimulus began), with the possible exception of a taste aversion experiment on eastern 

gartersnakes (Thamnophis sirtalis; Burghardt, Wilcoxon and Czaplicki, 1973). Many of these conditioning 

experiments included assessing reversal learning, when the formerly correct and incorrect choices are 

reversed. It has been suggested that improvements in the speed of learning such reversals is indicative 

of sentience (Birch, 2020). Many learning studies in reptiles only reverse the reward contingencies once, 

precluding an analysis of this effect, but there are a few exceptions (reviewed in Burghardt, 1977). 

Species that have been found to improve over successive reversals of a spatial learning task include 

Painted turtles (Chrysemys picta; Kirk & Bitterman, 1963; Holmes & Bitterman, 1966), spectacled 

caimans (Caiman crocodilus; Williams, 1968), American alligators and crocodiles (Crocodylus acutus; 

Gossette & Hombach, 1969), green iguanas (Alkov & Crawford, 1966), red-footed tortoises (Bridgeman 

& Tattersall, 2019), monitor lizards (Gaalema, 2011), and banded geckos (Coleonyx variegatus; Kirkish, 

Fobes and Richardson, 1979).  

No study that I am aware of has examined cross-modal learning (combining cues from more than one 

modality to learn an association) in any reptile. However, plains gartersnakes (Thamnophis radix) more 

strongly avoid a prey type previously paired with illness based on its odor when it is presented using 

brightly colored forceps, suggesting that the visual stimulus increases the salience of the odor (Terrick, 

Mumme and Burghardt, 1995).  

I am not aware of any serial reversal study in which a reptile did not improve over successive reversals, 

but there is a small number of such studies overall. Other than reversal learning, despite a large 

literature on basic learning in many species of reptile, there is limited evidence – positive or negative – 

for any of the other kinds of learning that, in mammals and birds, are sometimes taken as markers of 

sentience (Birch, 2020; Birch, Ginsburg and Jablonka, 2020; Mason and Lavery, 2022).  

Social complexity  

Though social behavior is not usually considered a behavioral marker for sentience, managing social 

complexity may be an important driver of the evolution of intelligence (Dunbar, 1998) and establishing 

and maintaining social structures may require simple forms of theory of mind. Social learning – learning 

about the environment by observing the choices of others – requires the kinds of complex associative 

skills often considered indicative of sentience (see above). In contrast to most other behavioral markers 

for sentience, there is a large and detailed body of literature on social structures across a wide range of 

reptile species, despite reptiles having been considered asocial for many years (Doody, Burghardt and 

Dinets, 2013). A comprehensive review of all the many ways reptiles engage in social living has recently 

been published (Doody, Dinets and Burghardt, 2021), and I will only highlight a few examples that 

emphasize the sophistication reptile social behavior can attain.  

Many reptiles come together at specific times of the year for mating, hibernating, or egg-laying, and can 

form complex social networks. Eastern gartersnakes prefer to aggregate with specific other individuals 

in their group (at least in the lab; Skinner & Miller, 2020), a preference that solidifies as they age 

(Skinner & Miller, 2022), and a similar dynamic appears to occur in Otago skinks (Oligosoma otagense; 

Elangovan et al., 2021). Butler’s gartersnakes (Thamnophis butleri) form association networks that are 



structured by sex and age (Skinner et al., 2023), and timber rattlesnakes (Crotalus horridus) aggregate 

more with kin than with unrelated snakes (Clark et al., 2012). Plains gartersnakes preferentially 

aggregate with conspecifics that they have not previously competed with for food (Yeager & Burghardt, 

1991), and Butler’s gartersnakes prefer to aggregate with individuals that are on a different diet from 

themselves, presumably because this also reduces food competition (Lyman-Henley & Burghardt, 1994). 

In ball pythons, generally considered a solitary species (though they readily aggregate in the lab; Skinner 

et al., 2024a), social experiences activate the same network of brain areas as in mammals (Skinner et al., 

2024b). These similarities in social behavior and neurophysiology across vertebrate classes suggest an 

ancient origin of complex sociality, and its underlying cognition. 

Sea kraits (Laticauda semifactiata) hunt cooperatively and take on different roles in the hunt 

(Somaweera et al., 2023), and there are reports of Cuban boas (Chilabothrus angulifer) spacing 

themselves across the mouth of a cave to more efficiently capture departing bats (Dinets, 2017). There 

are also anecdotal reports of cooperative hunting in crocodilians (Dinets, 2014). Some forms of 

behavioral coordination in reptiles may be driven by vocal communication (reviewed in Lin, Lin and 

Godfrey, 2024). For example, Nile crocodile (Crocodylus niloticus) hatchlings use vocal cues to 

coordinate their hatching times (Vergne et al., 2007). However, evidence of intentionality is usually 

required in order to consider communication or coordination as markers of consciousness (Dennett, 

1983), and this has not been tested for in any of these cases. 

Some reptiles have also been shown to use social information in sophisticated ways. Red-footed 

tortoises (Wilkinson et al., 2010a), leopard geckos (Simpson & O’Hara, 2019), bearded dragons (Siviter et 

al., 2017), and alligators (Zeiträg, Reber and Osvath, 2023) all gaze-follow, using the direction of gaze of 

a conspecific to decide where to direct their attention. Gaze following can be used to identify a general 

direction in which to look (low-level gaze following) or a specific location to examine (geometric gaze 

following). The latter of these, but not the former, has been linked to conscious social skills like theory of 

mind in humans (Kuhn et al., 2018; but see Teufel et al., 2010). Reptiles, however, despite being tested 

for both forms, have so far only demonstrated low-level gaze following (Siviter et al., 2017; Zeiträg et al., 

2023). 

Social interactions can also be used to expose other types of cognition. For example, like mammals, 

rattlesnakes display social buffering – a reduction in stress responses when in the presence of a 

conspecific – suggesting they can experience stress (Martin et al., 2023). Reptiles also show social 

learning: Florida red-bellied cooters (Pseudemys nelsoni; Davis & Burghardt, 2011), red-footed tortoises 

(Wilkinson et al., 2010b) and bearded dragons (Kis, Huber and Wilkinson, 2014) can socially learn 

responses that will lead to a food reward; Australian tree skinks (Egernia striolata) learn to move a disk 

covering a food reward faster if they first observe a trained conspecific solving the task (Whiting et al., 

2018), as do Italian wall lizards (Podarcis sicula), even if the demonstrator is a lizard of a different 

species (Damas-Moreira et al., 2018). 

Reptiles thus display a wide range of sophisticated social structures (Doody, 2023) and use social 

information in goal-directed ways. This bolsters evidence that they are capable of complex open-ended 

learning, experience (socially induced) stress or pleasure, and create and manipulate complex 

representations of their social environment. 

Self-recognition 



Self-awareness is a form of consciousness, sometimes defined as the ability to become the subject of 

your own attention (Gallup, 1977). In non-human animals, passing the Mark Test of mirror self-

recognition (MSR; Gallup, 1970) has been considered evidence for self-awareness, at least in apes, 

though there are good reasons to doubt that passing a test of self-recognition entails self-awareness 

(Heyes, 1994; Brandl, 2016; Freiburger, Miller and Skinner, 2024). The Mark Test consists of marking an 

animal that has been habituated to the presence of a mirror with a colorful dye somewhere on its body 

that is not visually accessible except using the mirror. Animals are considered to pass the test if, upon 

seeing the mark, they reach for their own body, rather than towards the mirror (or to an invisible 

control mark; Gallup, 1977).  

Most reptiles are not primarily visual and tests of self-recognition in reptiles have used an olfactory 

version of MSR, in which the subject is presented with its own modified odor instead of its own marked 

image (Horowitz, 2017). Using this test, eastern gartersnakes but not ball pythons have demonstrated 

self-recognition (Freiburger, Miller and Skinner, 2024). Male gartersnakes (but not females) investigate 

their own soiled bedding more than that of a same-sex conspecific consuming the same or a different 

diet (suggesting the discrimination is not purely based on detecting what the stimulus snake has been 

eating; Burghardt et al., 2021). Blue-tongued skinks investigate paper containing their own odor less 

than that of a conspecific (Graves & Halpern, 1991), as do several species of Liolaemus lizards (Aguilar, 

Labra and Niemeyer, 2009). Male desert iguanas (Dipsosaurus dorsalis) will flick their tongues (a sign of 

interest) at their own tails more after encountering their own odor than that of a conspecific (Alberts, 

1992) and female tokay geckos (Gekko gecko) tongue-flick at the ground of their home enclosure – 

saturated with their own odor – more when presented with the odor of a conspecific than their own 

odor (Szabo & Ringler, 2023).  

In the only attempt I know of to test self-awareness independently of self-recognition in a reptile, 

ratsnakes were shown to learn to avoid attempting to move between compartments via an opening that 

was too small for them to fit through, and would even avoid larger openings when they had recently 

eaten (and were therefore larger; Khvatov, Sokolov and Kharitonov, 2019).  

Self-awareness is often considered a more complex conscious state than sentience, but is assumed to 

require or be built on sentience (Mason and Lavery, 2022). Though the debate over whether passing 

tests of self-recognition entails self-awareness continues (Gallup and Platek, 2023), reptiles have passed 

these tests at rates similar to birds. 

Conclusion 

Though it is not possible to directly address questions about consciousness in the same way as other 

cognitive processes, indirect methods such as the marker approach offer a way to estimate the 

likelihood that a species is conscious. This approach has recently been used to argue that a wide range 

of species, including all vertebrates and many invertebrates have “at least a realistic possibility” of being 

sentient (Andrews et al., 2024). The value of such evidence lies primarily in its ability to encourage more 

research into animal sentience and the mechanisms of complex behaviors (Miller, 2024). Reptiles have 

long been neglected in psychological research and have often been considered cognitively simple 

(Burghardt, 1977). As a result, there is very little empirical evidence on which to judge claims about their 

sentience. In many cases, specific criteria proposed as behavioral tests of a conscious state, like those 

for pain (Crump et al., 2022), have simply never been tested in any reptile. 



In many cases, reptile behaviors appear structured similarly to those of mammals – for example in how 

they learn (Szabo et al., 2021), interact socially (Skinner & Miller, 2020), or show stress (Greenberg, 

2002). Though there is very little neurophysiological data, what there is appears to follow the same 

trend, with representations of social interactions (Skinner et al., 2024) and changes in brain waves 

across sleep states (Shein-Idelson et al., 2015) partly matching those seen in mammals. This strongly 

suggests that these behaviors and brain organizations are ancient in origin and conserved across all 

amniotes. If these behaviors in mammals can serve as evidence for sentience (Low et al., 2012), then 

they should elicit the same commitments when observed in reptiles. 

However, if reptiles are sentient, their sentience is fundamentally different from ours in many respects 

(as argued more generally by Nagel, 1974). Reptile brains are structured differently from ours, and 

reptile ecology varies widely both within the class and between reptiles and mammals (Font, Burghardt 

and Leal, 2023). These differences will certainly have shaped reptile sentience in ways that diverge from 

how mammalian evolutionary history has shaped ours. Reptiles do not appear to have REM sleep in the 

same way mammals and birds do; they may not experience pain – and relief from pain – in the same 

ways we do; they likely interpret social cues, such as gaze direction, differently; and their self-awareness 

will not function in the same way as ours. Only by conducting more research into the mechanisms of all 

these behaviors, in a wider array of species, can we begin to understand whether there is anything it is 

like to be a reptile and explore the full diversity of ways sentience can manifest.  
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Figure 1. Simplified phylogeny of extant amniotes, with a focus on reptiles. Reptiles are shown in green, 

mammals in blue, and birds in red. The turtle lineage is disputed. Phylogenetic data are from TimeTree 

(Kumar et al., 2022). 


