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In a recent article, the authors (Miller & Shettleworth, 2007) showed how the apparently exceptional
features of behavior in geometry learning (“reorientation”) experiments can be modeled by assuming that
geometric and other features at given locations in an arena are learned competitively as in the
Rescorla-Wagner model and that the probability of visiting a location is proportional to the total
associative strength of cues at that location relative to that of all relevant locations. Reinforced or
unreinforced visits to locations drive changes in associative strengths. Dawson, Kelly, Spetch, and
Dupuis (2008) have correctly pointed out that at parameter values outside the ranges the authors used to
simulate a body of real experiments, our equation for choice probabilities can give impossible and/or
wildly fluctuating results. Here, the authors show that a simple modification of the choice rule eliminates
this problem while retaining the transparent way in which the model relates spatial choice to competitive
associative learning of cue values.
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When animals learn the location of reward in arenas of various
shapes, cues to the shape or geometry of the arena seem to have a
special status in that they may not be blocked or overshadowed by
other cues such as the colors of walls, even when those cues are
better predictors of the reward’s location. Learning about such
landmarks or beacons may even be potentiated by geometry (fea-
ture enhancement; Miller & Shettleworth, 2007; review in Cheng
& Newcombe, 2005). We (Miller & Shettleworth, 2007) recently
proposed a simple mathematical model that accounts for many of
the puzzling features of such geometry learning (or “reorienta-
tion”; Dawson, Kelly, Spetch, & Dupuis, 2008) experiments.

Our model assumes that the learning underlying spatial choice is
described by the classic Rescorla-Wagner equation in which all
cues (elements, E) at a location (L) compete for associative
strength.

�VE � � PL �1 � VL�. (1)

The probability of choosing a location (PL) reflects the total
associative strength of cues at that location relative to the total
associative strengths of all locations,

PL � VL/�VL. (2)

The apparently special features of geometry learning arise be-
cause the animal’s choices determine the contingencies between
cues and reward in a dynamic way and because some cues, such as
certain shapes of corners, may be shared among locations. Previ-
ously learned or salient nongeometric features enhance learning of

geometry because when the animal visits rewarded locations con-
taining those features it learns about co-occurring geometric cues.
The model reproduces the results of a substantial number of recent
experiments in both dry arenas and water tanks (Miller & Shettle-
worth, 2007).

The Flaw Identified by Dawson et al.

Dawson et al. (2008) have identified an important mathematical
error in our formulation of the model. By making corner choice (P)
directly proportionate to associative strength (VL) and allowing VL

to be negative if the net associative strength of elements at a
particular location is inhibitory, the model gives negative values of
PL for certain values of � or after many iterations (i.e., trials).
Also, because the sum of the probabilities is always 1, under these
circumstances values of PL for other locations become larger than
1. In addition, when this occurs, values of the various elements
reach unreasonable values and fluctuate wildly. As Dawson et al.
(2008) point out, this problem can be quite easily remedied by
changing the equation for P in such a way that P is guaranteed to
remain between 0 and 1. A variety of choice functions may be used
including exponential functions (Couvillon & Bitterman, 1985) or
as Dawson et al. (2008) suggest the logistic equation or the output
activity of a perceptron. Below, we suggest another solution,
which also eliminates the problem.

It is important to note that only our choice rule (or performance
rule) needs to be modified (Equation 2). The equation that regu-
lates learning in the model (Equation 1) remains unchanged, as do
the basic qualities of the model. Whatever performance rule is used
to guide choice, so long as choice remains proportional in some
way to what has been learned about the elements present at each
location, the structure of the model remains the same. A simple
modification of the model that satisfies this condition and solves
the problem is to set the overall associative strength of a given
location (VL) to 0 if VL is negative. This is comparable to stating
that a location cannot be chosen less often than never, even if it is
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inhibitory overall. Choices are allocated among the remaining
locations according to what can now be thought of as their relative
attractiveness, r. Thus we set the attractiveness of a location (rL) to
be the sum of the associative strengths of all the elements at that
location (as in our original definition of VL) if that sum is positive,
and set rL � 0 otherwise (i.e., the attractiveness of an inhibitory
location is 0). Equation 2 then becomes:

PL � rL/��rL�. (3)

Replacing VL by rL ensures that the sum of the choice proba-
bilities over all locations will always be 1 and eliminates the
problem uncovered by Dawson et al. (2008) while retaining all the
predictive power of the original model. If anything, this modifi-
cation also increases the model’s intuitive psychological realism in
that it does not postulate negative choices. Moreover, there is some
precedent for giving inhibition special treatment in associative
models. Wagner and Rescorla (1972; see also Rescorla, 1979)
recognized that making inhibition the precise mathematical oppo-
site of excitation in their model generated some unrealistic predic-
tions, and inhibition has remained problematic for that model
(Miller, Barnet, & Graham, 1995).

To firmly establish that the aberrant behavior identified by
Dawson et al. (2008) is eliminated by the current modification to

the model, we recreated the example they presented. We reran our
simulation of Wall, Botly, Black, and Shettleworth’s Experiment 3
(2004; for details of the simulation see Miller & Shettleworth,
2007) as Dawson et al. (2008) did, with all values of alpha set to
0.6, using both the original and the modified model. Figure 1
presents the choice probabilities (P) for both versions of the
simulation. The top panel, simulated with the original model,
reproduces the impossible results observed by Dawson et al.
(2008; see their Figure 1B). The bottom panel shows the same
simulation run with the modified model. It may be seen that the
new version of the model does not give choice probabilities larger
than 1 or smaller than 0. This is also true if the simulation is run
for many hundreds of trials (data not shown). In fact, we have not
found any condition under which the new model will give impos-
sible results.

We have recalculated the results of all the experiments simu-
lated in our original presentation of the model, both the single
choice and the multiple-choice versions. The relative strengths of
different elements and the relative percentages of choices of dif-
ferent corners are not changed in any of the simulations, both those
presented in detail in the article and those whose results are
summarized. In addition, the basic phenomenon of feature en-
hancement continues to appear as before. In most of the simula-

Figure 1. Choice probabilities for the simulation of Wall et al.’s (2004) Experiment 3. Top panel: run with the
original model as presented in Miller and Shettleworth (2007); Bottom panel: run with the modified choice rule
presented here. Simulations were run with all alpha values set to 0.6 (see Dawson et al., 2008). Correct �
rewarded corner of the rectangular enclosure; Rotational � corner diagonally opposite the rewarded corner;
Near/Far � remaining corners.
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tions, the results were identical to those of the original simulation
because no location ever became inhibitory overall and the new
rule was never invoked.

One simulation in which locations did become inhibitory was
that of Cheng’s Experiment 3 (1986). Cheng (1986) trained rats to
locate a reward in one corner of a rectangular enclosure in which
each corner was marked by a distinctive feature. In our simulation
of this experiment, the feature at the rotational corner (i.e., the
corner diagonally opposite the rewarded corner) acquires a strong
inhibitory value because it is paired with the correct geometry, but
with no reward. After acquisition, Cheng (1986) tested the rats in
a transformed enclosure in which each feature was rotated one
corner along. Our simulation assumes that each feature carries its
associative strength with it, and that choice of corner during the
test is determined by the new total associative strength of each
corner. As a result, our original model predicted a negative choice
probability for the “far” corner, to which the inhibitory feature
from the rotational corner had been moved by the test manipula-
tion (Miller & Shettleworth, 2007, p. 197). Specifically, the orig-
inal model gave test choice probabilities of 0.32 for both the
geometrically correct corners, 0.42 for the near corner, and �0.05
for the far corner. The same simulation run with the modified

model gives 0.3 for the correct and rotational corners, 0.4 for the
near corner, and 0 for the far corner. Thus, the modified model
does not give negative probabilities while retaining the relative
choice percentages among the different corners.

In all of the simulations presented in our original paper, we
included an element labeled B, representing contextual cues
present at all locations. This element was given an initial associa-
tive strength of 0.1 both in order to avoid division by 0 in the first
trial’s calculation of P and to represent the associative strength
resulting from pretraining trials that are common in geometry
learning experiments (Miller & Shettleworth, 2007). Since element
B is present at all locations, it interacts with all the other elements,
both rewarded and unrewarded. In order for a particular location to
have a negative associative strength overall, the associative
strengths of the inhibitory elements present there would have to be
larger, in absolute terms, than sum of the positive terms, which
include B. Two related processes usually prevent this from hap-
pening:

First, the associative strength of element B itself is decreased by
visits to unrewarded corners and increased by visits to rewarded
corners. Since most simulations visit rewarded corners far more
often than unrewarded corners (which is what the model is sup-

Figure 2. Simulation results of the thought experiment (see text for details). Right panels: diagram of the
experiment. The three panels show the three phases of the experiment. The black circle indicates a rewarded
location; the black triangle indicates a feature. Left panels: associative strengths (top) and choice probabilities
(bottom) for the first two phases of the experiment. Each phase was run for 50 trials (because it took the Model
50 trials of phase 1 to reach the 90% geometrically correct criterion). Upper panel: B � element B as defined
in the text; G � geometry of the corners rewarded in Phase 1; W � geometry of the corners not rewarded in
Phase 1; F � the feature. Lower panel: Correct, Rotational, Near/Far as in Figure 1.
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posed to do), VB tends to either increase overall or to decrease very
slowly (as better predictors of reward begin to capture more of the
associative strength).

Second, the associative strengths of inhibitory elements de-
crease only when an unrewarded location is visited. By virtue of
being inhibitory, these elements drive the simulation to avoid these
locations most of the time, thus retarding the further growth of
inhibition. Thus, only very rarely do the conditions exist for
inhibitory elements to overcome positive elements that co-occur
with them and lead to an aversive location.

To illustrate these dynamic feedback processes in a clear case of
inhibitory learning, we model the following thought experiment.
Animals are trained initially to choose either of two geometrically
identical corners of a rectangular enclosure (Figure 2, top right
panel). Reinforcement is given for 50% of correct choices, and the
animals are trained until they are about 90% correct (i.e., they
choose each of the indistinguishable corners with the correct
geometry on 45% of trials). Then, a very salient feature is added to
one of the geometrically correct corners and reward is no longer
given there, while the unmarked rotational corner with the same
geometry always has reward (center right panel). Under these
conditions, the feature should become strongly inhibitory while the
unmarked opposite corner is eventually chosen most of the time. A
test of the inhibitory value of the feature is now conducted by
placing the animals in a square enclosure with the feature in one
corner (bottom right panel). Here, the animals would be expected
to avoid the marked, inhibitory, corner and distribute their choices
evenly among the other three. The left panels of Figure 2 show the
associative strengths of the various elements (top) and the corner
choice probabilities (bottom) for the first two phases of this sim-
ulation. The graphs represent the simulations for both the original
version of the model and the modified version since, as described
above, the modified rule was never invoked during training in this
simulation. However, during the test phase, when geometric in-
formation is removed, the strongly inhibitory feature causes neg-
ative choice probabilities to be predicted by the original version of
the model. Specifically, the original model gives choice probabil-
ities at test of �0.41 for the rotational corner (that contains the
inhibitory feature), and 0.47 for all other corners, whereas the
modified model gives 0 for the rotational corner and 0.33 for the
remaining three corners. As with the Cheng (1986) example above,
the modified model solves the problem.

In conclusion, the correction to our model proposed here pre-
vents the model from taking on choice probabilities that are greater
than 1 or are negative, without otherwise affecting its behavior.
While in some extreme cases the rate of learning in the model may
vary slightly, there is no difference in the relative associative
strengths that it predicts for all the experiments we have simulated

so far. Our model has the advantage of being easily understood on
an intuitive level and the dependence of choice on associative
strength being obvious. If anything, the modification described
here makes the model even more intuitive and follows a tradition
in which inhibitory cues seem to require special treatment in
models of associative learning. The model shows in a transparent
way how what appeared to be exceptional kinds of cue interactions
in geometry learning experiments can arise from an unexceptional
competition for learning among geometric and other cues. If it
turns out that alternative formulations, such as the perceptron
proposed by Dawson et al. (2008) and the view-matching process
proposed by Cheung, Sturzl, Zeil, and Cheng (2008), can repro-
duce the same range of findings as our model, a challenge for the
future will be to look for ways in which their predictions differ.
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