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K. Cheng (1986) suggested that learning the geometry of enclosing surfaces takes place in a geometric
module blind to other spatial information. Failures to find blocking or overshadowing of geometry
learning by features near a goal seem consistent with this view. The authors present an operant model in
which learning spatial features competes with geometry learning, as in the Rescorla–Wagner model.
Relative total associative strength of cues at a location determines choice of that location and thus the
frequencies of reward paired with each cue. The model shows how competitive learning of local features
and geometry can appear to result in potentiation, blocking, or independence, depending on enclosure
shape and kind of features. The model reproduces numerous findings from dry arenas and water mazes.
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Cheng (1986) was the first to show that animals can use the
geometry of an enclosure to locate a hidden goal. In a working
memory task, he found that distinctive corner panels did not
prevent rats from learning about the shape of a rectangular enclo-
sure and that rats sometimes ignored the panels and searched for a
hidden reward at the diagonally opposite, geometrically identical,
corner of the enclosure, dubbed therotational corner(see Figure
1). Cheng concluded that shape parameters of the enclosure are
learned separately from featural information in a specializedgeo-
metric module. Later studies have shown that, in a reference
memory version of Cheng’s task, features are also eventually
learned (e.g., Cheng, 1986, Experiments 2 and 3; Wall, Botly,
Black, & Shettleworth, 2004). Many other species, including fish,
birds, monkeys, and human children, learn geometry in a similar
way (see review in Cheng & Newcombe, 2005).

Studies of geometry learning raise two essentially separate
issues. One is, what is encoded in geometry learning? This debate
has centered on whether animals extract some global parameter of
a space, such as its principal axis, or use local geometric features,
such as sizes of angles and sides (see Cheng & Gallistel, 2005).
Here we focus on the other fundamental issue in the area: How
does learning based on the hypothesized geometric module interact
with learning based on other spatial cues? In the most recent
version of the geometric module hypothesis, Cheng and New-
combe (2005; see also Cheng, 2005b) suggested several interpre-
tations for the modularity of geometric information. Rather than

being entirely separate from processing of features, geometry
could combine with featural information in memory or in deter-
mining performance. Pearce, Ward-Robinson, Good, Fussell, and
Aydin (2001) were apparently the first to point out that reliance on
geometric cues for learning the location of a goal, even in the
presence of more informative features, implies that geometry and
features are learned independently rather than competing for learn-
ing as do conventional conditioned stimuli (CSs). The signature
phenomena of cue competition in conditioning are overshadowing
and blocking. In overshadowing (Pavlov, 1927), when two cues
are redundant predictors of the same outcome, less is learned about
either than when it is the sole predictor of the outcome. In blocking
(Kamin, 1969), training with a single cue reduces (blocks) learning
about a second, redundant cue added later.

Several studies have looked for blocking or overshadowing of
geometric information by features (for a review, see Cheng &
Newcombe, 2005). Most studies have concluded that a predictive
feature near a goal does not block learning about the shape of an
enclosure (e.g., Hayward, Good, & Pearce, 2004; Pearce et al.,
2001; Wall et al., 2004). Moreover, in contrast with the expected
competition between cues, geometry is sometimes learned better in
the presence than in the absence of informative features. Pearce et
al. (2001), for example, found that a beacon improved learning
about the geometry of a triangular water tank. Other researchers
have come across hints of this same phenomenon (e.g., Hayward
et al., 2004; Hayward, McGregor, Good, & Pearce, 2003). Using
a geometrically unambiguous kite-shaped water tank, Graham,
Good, McGregor, and Pearce (2006) demonstrated in rats substan-
tial potentiation of geometry learning by a feature. Kelly and
Spetch (2004a, 2004b) also found clear evidence of potentiation of
geometry learning by a feature in an operant task in which people
and pigeons were reinforced for choosing a particular corner of a
rectangle on a touch screen. In contrast with these results, a few
studies have claimed to show overshadowing or blocking of ge-
ometry learning by features (e.g., Gray, Bloomfield, Ferrey,
Spetch, & Sturdy, 2005; Pearce, Graham, Good, Jones, & McGre-
gor, 2006).

Here we present a model of geometry learning that offers what
is, to the best of our knowledge, the first suggested explanation for
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these conflicting results. We present an associative model of
geometry learning that can account for potentiation, blocking, or
independence between geometry and features without the need to
invoke a special status for geometric cues during learning. The
model is based on the Rescorla–Wagner model of classical con-
ditioning (Rescorla & Wagner, 1972). Geometry learning is con-
sidered as a form of conditioning in which cues at the correct
location become associated with the reward found there (i.e., they
become CS�s). Similarly, cues at incorrect locations become
associated with the lack of a reward (CS–). However, geometry
learning tasks are operant conditioning tasks because the subject
chooses which location to search. Therefore, the subject’s behavior
determines the proportion of the different possible types of trials.
The model assumes that the distribution of a subject’s choices
among different locations is determined by the relative total asso-
ciative strengths of the cues (both geometric and featural) at those
locations. We show that such a model predicts the potentiation

effects seen in the studies discussed earlier and that these effects
can explain the lack of cue competition seen in many geometry-
learning experiments. Because the mechanism that we suggest may
underlie the apparent lack of cue competition is conceptually
different from the mechanisms assumed to underlie potentiation
(e.g., in taste aversion conditioning; for a review, see Graham et
al., 2006, pp. 57–58), we propose a different term,feature en-
hancement,to describe it. The model also shows how training with
different kinds of features and shapes of enclosures sometimes
leads to blocking and overshadowing, as in recent studies by
Pearce, Graham, Good, Jones, and McGregor (2006).

This article has two main parts, corresponding to two kinds of
training procedures used in geometry-learning studies. In food-
rewarded tasks, such as the one used by Wall et al. (2004), animals
typically choose only one location per trial, for example, searching
in a single corner before being removed from the enclosure. The
model is introduced with tasks of this kind. When rats are trained
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Figure 1. The model of Wall et al. (2004, Experiment 3). Panel A shows the enclosure used in the example.
The filled circle indicates the rewarded corner, marked C. The black triangle indicates a feature. Panel B shows
a comparison of the associative strength of the correct geometry (VG) across trials between the control and
blocking groups. Panel C shows associative strengths of all model elements for the control group. Panel D shows
associative strengths of all model elements for the blocking group. Panel E shows first choice probabilities for
each of the four corners for the control group. Panel F shows first choice probabilities for each of the four corners
for the blocking group. F (in Panel A)� far corner; C� correct corner; R� rotational corner; N� near corner;
B � bowl; G � geometry of the correct corners; W� geometry of the incorrect corners; F (in Panel C)�
feature;V � associative strength;P � probability.
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in a water tank, however, they are typically allowed to find the
reward (the dry platform) on every trial, perhaps visiting many
other parts of the experimental enclosure along the way. Such tasks
require a more complex version of the model in which animals
make multiple choices per trial and every trial ends in a reward.
This is presented in the second part of the article. Applying the
model to a series of studies by Pearce and colleagues with several
different shapes of enclosures and kinds of features (e.g., Graham
et al., 2006; Pearce et al., 2001, 2006) shows how these variables
influence whether animals’ choices appear to reflect cue compe-
tition, potentiation, or independence.

Single-Choice Model

Model Structure

The Rescorla–Wagner model states that the associative strength
(V) gained by any CS is a function of its inherent salience (�) and
the learning rate (�) related to the unconditioned stimulus (US)
and is asymptotic to a level determined by the magnitude of the US
(�). Thus, the gain in associative strength (�V) on a given trial is
as follows:

�V � ���� � V�. (1)

Different CSs presented together compete for a limited amount of
associative strength. This leads to predictions of blocking and
overshadowing (Rescorla & Wagner, 1972). The associative
strength of different CSs is marked with subscripts:VA, VB, and so
forth.

Because US-mediated effects have not generally been tested in
geometry-learning experiments, we set� to equal 1 and ignored its
effect. Rescorla (2002) suggested that�, the learning rate, is
greater on reinforced trials than on nonreinforced trials. Although
we do not present the data here, incorporating this assumption into
our single-choice model does not alter the direction of the results.
We also set�, the asymptotic associative strength, to 1 when the
US was present. On trials where the US was not present, extinction
trials, � was 0 (for details, see Rescorla & Wagner, 1972). For
simplicity, in all of the examples given here, we set all� values to
0.15 (this value was selected to make the term� 	 � � 0.15, as
in all the examples in Rescorla & Wagner, 1972).

Obviously, the behavior of the model is partially dependent on
the value chosen for�. However, the relationship between the
saliences of each of the CSs and their effect on the results depends
on the particulars of the experiment. It is not possible to formulate
a rule for the effect of increasing or decreasing� on the final
results of the model. For this reason, for the experiments discussed
under each version of the model, the same value of� is used for
all CSs, except where stated otherwise.

We use the nameelementsfor all the different cues that the
subject could encode—corresponding to the CSs in a classical
conditioning experiment. A corner of a rectangle in a typical
geometry experiment may contain many elements, such as a black
stripe, a long wall on the left, and a 90° angle. Each element is
either present or absent at each possible location that the subject
can choose. At each time step (loosely corresponding to a trial), we
calculate a separate�VE for each element (E). We assume, for the
moment, that the associative strengths for all elements start at 0
(see Rescorla & Wagner, 1972). Apart from the associative

strengths of each of the elements (VE), we can also defineVL, the
associative strength of a particular location (L), as the sum of the
associative strengths of the elements present at that location.

To make our version of the Rescorla–Wagner model work with
geometry-learning tasks, which are operant tasks, the model re-
quires some measure of the probability,P, of a subject choosing a
particular location, L. We assume that at the beginning of training,
all choices are equally probable. We require the probability of
choosing a particular location (PL) to be proportionate to the
associative strengths of all the elements present at that location
(VL). Another way of putting this is that the subject’s choice of a
location is guided by what the subject has learned about the
elements present at this location, relative to the total associative
strengths of elements present at the other locations:

PL � VL/¥VL, (2)

whereVL is the associative strength of location L, and
VL is the
sum of theVs for all the locations. Note that
VL is not simply the
sum of theVs for all elements, because certain elements may be
present at more than one location but rather is the sum of all the
VLs. Note also that although we model choice, choices per se are
not reinforced. Rather, the subject’s choices reflect the relative
attractiveness of cues or sets of cues that have gained or lost value
by being experienced in close spatial proximity to reward or
nonreward, respectively, much as in studies of conditioned place
preference.

We assume, following the Rescorla–Wagner model, that the
associative strength of an element changes only on trials when it is
presented, but in an operant situation like geometry learning, the
probability of choosing each location determines how often any
element in it is presented. We model this by multiplying the
change in associative strength of an element (�VE) by the proba-
bility of making each choice at which that element is present (PL).
Thus, in our model, all the associative strengths change on every
“trial,” but the rate of change (�V) is modulated by the frequency
with which the various elements are experienced (which is the
probability of visiting any corner containing that element). Thus,
our formula for�VE becomes as follows:

�VE � ��� � VL�PL. (3)

We need to add a term to this equation for each location at
which the element is present. Where the location is rewarded,� is
1, and where it is unrewarded,� is 0. A detailed example is given
in the Resultssection. For simple cases where each element is
present at only one location, the elements do not influence each
other’s associative strengths, and the current model reduces to the
Rescorla–Wagner model.

Elements that are present at more than one location may be
compared with predictors with a contingency of less than 1. In a
rectangular enclosure, the geometry has a contingency of 0.5
because following the geometry leads to a reward half of the time.
When low-contingency elements are present at the same locations
as higher contingency elements, the elements interact (i.e., they
influence each other’s associative strengths). The higher contin-
gency elements increase the probability of that location being
chosen, thus increasing the associative strengths of other elements
present at the same location. These interactions are the cause of
what we termfeature enhancement,in which low-contingency

193ASSOCIATIVE MODEL OF GEOMETRY LEARNING



elements gain more associative strength than expected because of
learning that is based on higher contingency elements increasing
the frequency with which they are paired with reward.

The lack of cue competition displayed by the model is driven by
feature enhancement. Feature enhancement may be simply under-
stood thus: In a rectangular enclosure, such as that shown in Figure
1A, a feature at a correct corner is learned faster than the geometry
because of its higher predictive value. The quick learning about the
feature leads the subject to be more often exposed to the correct
corner than the rotational corner, and this causes the associative
strength of the geometry to increase faster than it would have if the
subject had relied only on geometry. The subject may be said to
have misjudged the reward contingency of the geometry, assuming
it to be higher than 0.5, because the subject is rewarded on more
than half of the visits to a geometrically correct corner. As the
associative strength of the geometry increases, subjects make more
rotational choices, and the perceived contingency of the geometry
begins to decrease toward its true value. When subjects are tested
in the absence of the feature, usually after a relatively small
amount of training, they display more control by the geometry than
expected. Thus, feature enhancement can account for the lack of
overshadowing observed in many studies. This same result is
obtained if the feature, rather than being a better predictor of the
reward than geometry, is assumed to have a higher salience than
the geometry, as in the studies of Graham et al. (2006) discussed
later.

Lack of blocking is mediated by essentially the same process.
Early exposure to featural information alone in the initial phase of
any blocking study causes the associative strength of the feature to
increase. In this phase, the feature is the only consistently re-
warded element, so the location with the feature soon comes to be
chosen on a high proportion of trials, and the feature appears to be
well learned long before its associative strength is near asymptote.
Thus, feature enhancement can still occur in the second phase of
the experiment, when the feature element is paired with the ge-
ometry element. An example of such a scenario is explained later.

Results

In this section, we model several key geometry-learning studies
in single-choice paradigms and show that our model generates
similar results. All calculations were performed with an implemen-
tation of the model in Visual Basic. Application files and source
code are available from Noam Y. Miller. All values of� were set
at 0.15. All examples were run for 20 trials of training before the
tests were modeled. Because all the associative strengths change
on each trial of the model, this does not correspond exactly to 20
trials of a real experiment. However, it could correspond to the
mean performance of a large group of animals.

Wall et al.’s (2004) Experiment 3.Failures of a feature near or
at a goal to block geometry learning are most striking when the
geometry predicts the location of the goal less well than does the
feature, as in the rectangular enclosure with one rewarded location
depicted in Figure 1A. We take Experiment 3 of Wall et al. (2004),
in which rats searched for buried food, to illustrate how the model
applies to such experiments. This first example is worked through
in some detail to demonstrate the steps involved in the calculation.

One group of rats, the blocking group, was first trained to find
food buried in a bowl in a corner of a square enclosure. The correct

corner was marked by a feature. Another group, the control group,
was trained in a square enclosure with no feature that contained
just one bowl, which contained a reward. After training to crite-
rion, both groups were retrained in a rectangular enclosure with the
same feature indicating the correct corner (as shown in Figure 1A),
and then both groups were tested in the rectangular enclosure in
the absence of the feature. Previous exposure to the feature when
there was no geometric information available would be expected to
block learning about the geometry in the blocking group as com-
pared with the controls. However, in the test with no feature, both
groups of rats showed a clear and statistically indistinguishable
preference for both the correct and rotational corners.

In the second phase of this experiment, when both groups are
trained in a rectangular enclosure, there are four locations (the four
corners) that the subjects can choose to search: The correct, rota-
tional, near, and far corners. Each location contains certain ele-
ments, cues that the subject can associate with the locations and
later use to orient itself. The only cues available are those within
the enclosure. This reflects the fact that in most geometry-learning
studies, subjects are disoriented prior to each trial and isolated
from extraenclosure cues (for the importance of disorientation, see,
e.g., Margules & Gallistel, 1988).

Several cues exist at all the corners, such as a 90° angle, a bowl,
or a certain pattern of light and shadow. We include in the model
only one of these cues, because the cues are always present
together. Let us assume that what we are coding is the presence of
the bowl, although the precise identity of the element is not
important, and call this element B.

The correct corner also contains the feature (shown as a black
triangle in Figure 1A) that is unique and is therefore a second
element in the model (element F). The correct and rotational
corners also have the same geometry, which we call element G.
Note that the model does not specify which aspects of the geom-
etry are encoded (e.g., whether these are the principal axes of the
shape or the lengths of the walls and their sense). The near and far
corners also have the same geometry, opposite to that of the correct
and rotational corners, and this is element W (for wrong). Thus,
our model for this example has four elements: B, F, G, and W.
Element B is present at all corners, element F is present at the
correct corner only, element G is present at the correct and rota-
tional corners, and element W is present at the near and far corners.

We now calculate the choice probabilities for each of the four
locations. By Equation 2, the probability of the subject searching
at the correct corner (PCorr) is given byPCorr � VCorr/
V. Here,
VCorr is the sum of the associative strengths of the elements present
at the correct corner:VB � VF � VG. 
V is the sum of the
associative strengths of the elements present at all corners and is
given by the following:

¥V � VCorr � VRot � VNear � VFar � 4 � VB

� 2 � VG � 2 � VW � VF, (4)

where Rot stands for rotational corner, and Corr stands for correct
corner. Similar calculations give us the initial probabilities for the
other corners as well.

Our definition ofP creates a problem during the first trial: When
all the Vs are initially set to 0, we attempt to divide by 0 when
calculating the choice probabilities. The simplest solution to this
problem is to make the initial value of one of the elements greater
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than 0. For simplicity, we set the initialVB, the associative strength
of the bowl element, to 0.1. Assuming a nonzero initial associative
strength for the bowl is comparable with giving subjects a brief
period of pretraining with the bowl, a procedure often followed in
geometry-learning experiments (e.g., Kelly, Spetch, & Heth, 1998;
Wall et al., 2004) or, as in this case, an initial phase with training
in a different enclosure.

Setting the initialVB at 0.1 and all the otherVs at 0 gives, by
Equation 4,
V � 0.4. Thus,PCorr � 0.25, which is what we
expected. Because there has not yet been any learning, we expect
all the choice probabilities to be equal (i.e., for the subject to
choose at random).

We now calculate the�Vs for the first trial, for each element.
We start with the feature at the correct corner:

�VF � ��1 � VBFG�PCorr. (5)

VBFG is the sum ofVB, VF, andVG, the associative strengths of the
elements present at the correct corner.PCorr is the probability of
choosing the correct corner, currently at 0.25. BecauseVB is 0.1,
andVF andVG are 0, we have�VF � 0.034.

For the geometry element, which is present at two corners, we
need a two-term equation:

�VG � ��1 � VBFG�PCorr � ��0 � VBG�PRot. (6)

The first term in this equation is the same as the previous equation
and represents the change in the associative strength of the geom-
etry that results from visits to the correct corner. However, the
geometry element is also presented on visits to the rotational
(unrewarded) corner. The second term of the equation gives the
change toVG resulting from rotational choices.� is 0 in this term
as this is an unrewarded location. Solving the equation gives
�VG � 0.03.

Note that in Equation 6 the associative strength of the geometry
both increases and decreases. This may be thought of as corre-
sponding to the results of a large group of animals, a certain
proportion of which visit either the correct or rotational corner, as
determined by the relative values ofPCorr andPRot.

Element W, the geometry of the incorrect corners, is also
present at two corners, both of which are unrewarded. Thus, it also
has a two-term equation:

�VW � ��0 � VBW�PNear � ��0 � VBW�PFar. (7)

Because both terms of this equation are always negative, the
associative strength of this element only decreases and is always
negative (i.e., element W, the geometry of the wrong corners,
becomes a conditioned inhibitor). Solving the equation gives
�VW � –0.0075.

Finally, �VB, the change in the associative strength of the bowl,
which is present at all four locations, is given by the following:

�VB � ��1 � VBFG�PCorr � ��0 � VBG�PRot � ��0 � VBW�PNear

� ��0 � VBW�PFar � 0.023. (8)

This equation has one term for each location at which the bowl is
presented. Because the initial value ofVB was 0.1, we now have
VB � 0.123. The otherVs, because their initial values were 0, are
now VF � 0.034,VG � 0.03, andVW � –0.0075. Note that the

associative strength of the feature grows fastest, followed by the
geometry.

After this first trial, by Equation 2, we havePCorr � 0.327,
PRot � 0.268, PNear � PFar � 0.202. Thus, the probability of
choosing the correct corner grows faster than the probability of
choosing the rotational corner, and the probability of choosing the
near and far corners decreases. The associative strength of the
geometry (VG) eventually begins to decrease, when the second
term of Equation 6 becomes larger than the first (as a result of the
inexorable increase inVF). The associative strength of the feature
continues to increase indefinitely and asymptote at� (i.e., the
feature eventually usurps control of the behavior).

The example above shows the process of feature enhancement
in action. The associative strength of the feature (VF) grows faster
than that of the geometry (VG), because the feature is present only
at the correct corner (Equation 5 does not have a negative term, but
Equation 6 does). The increase inVF increases the probability of
choosing the correct corner (PCorr), because the feature is present
only at that corner. The increase inPCorr, in turn, increases the
associative strength of the geometry (VG), by increasing the pos-
itive term of Equation 6. If there were no feature,PCorr would
increase more slowly, as wouldVG. Thus, the presence of the
feature early on in training, rather than competing with the geom-
etry, enhances learning about the geometry.

Feature enhancement is a transitory phenomenon and operates
only when all the associative strengths are relatively small. When
the associative strength of the feature becomes large enough,
overshadowing does occur. Thus, if there were no feature in our
earlier example, Equation 6 would become as follows:

�VG � ��1 � VBG�PCorr � ��0 � VBG�PRot. (9)

The second term of the equation, representing the change in
associative strength due to visits to the rotational corner, has not
changed, because nothing has changed in that corner. The first
term of the equation has changed in two ways: First, (1 –VBGF) has
become (1 –VBG), which is a larger number (becauseVF � 0), thus
increasing the overall associative strength of the geometry. Sec-
ond, PCorr has become smaller, because it is now proportional to
VBG rather than toVBGF (the correct corner is less likely to be
chosen in the absence of the feature). Thus, the addition of the
feature pushesVG in opposite directions, leading to an increased
associative strength of geometry early on (whenVF is small)
corresponding to feature enhancement and to a lowered rate of
associative strength increase later (whenVF is large), correspond-
ing to overshadowing.

Next, we model the blocking group in the same experiment. The
difference in the past experience of the two groups is represented
by giving the blocking group a high initial associative strength for
the feature (VF). All other values are as described earlier, and all
the same equations are used. From these initial settings, an impor-
tant difference between the two groups emerges: Because the
blocking group has had previous experience with the feature and
associates it strongly with the reward, members of this group tend
to make fewer errors at the beginning of the second phase (this
may be seen in Wall et al.’s, 2004, Figure 4); thus, they have a high
initial value for PCorr, the probability of making a correct choice.

During the first stage of the experiment, when the blocking
group is exposed to the feature in the absence of geometric
information, there is nothing to compete with the feature. Thus,VF
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does not need to get very large before choice of the corner with the
feature reaches a high level. We arbitrarily assume an initialVF of
0.3 for the blocking group for the purposes of this example and in
all further examples of a blocking paradigm. IfVF is assumed to be
much larger (around 0.6 for this example), corresponding to a large
amount of training in the initial phase of a blocking experiment,
cue competition effects swamp the feature enhancement effect.

In the second phase of the experiment, both groups (blocking
and control) are given both types of cues: featural and geometric.
There is more feature enhancement in the blocking group than in
the controls, because of the high initial associative strength of the
feature for that group. Thus, the blocking group learns about the
geometry faster than the controls. In fact, there is a dip in the
blocking group’sPCorr early on as members of this group make
more geometric errors (cf. our Figure 1F with Figure 4 of Wall et
al., 2004). No such dip is seen in the controls, obviously. It is
important that choice of the rotational corner (i.e., a geometric
error) is more common than choice of the other unrewarded
corners in both groups, as it was in the real experiment.

Figure 1 shows the associative strengths and choice probabilities
for this example, for the first 20 trials of training, and for the
control and blocking groups. The figure directly compares the
associative strengths of the geometry (theVGs) for the two groups.
The blocking group initially learns about the geometry faster than
the controls as a result of feature enhancement. Note also that
element W, the geometry of the wrong corners, gains some inhib-
itory strength (VW is negative). This is explored in more detail in
the following example.

Finally, to model Wall et al.’s (2004) probe tests on the control
group, with the feature removed, we simply remove the feature
element from all equations (or setVF to equal 0). All other
associative strengths retain the values they held at the end of
training (VB � 0.192,VG � 0.19,VW � �0.1). We then calculate
the choice probabilities with Equation 2. The results are as follows:
PCorr � PRot � 0.4, PNear � PFar � 0.1. Without the feature to
disambiguate the geometry, the equations and results forPCorr and
PRot become identical. In this test, the model for the control group
predicts 80% geometrically correct choices on the test. The asso-
ciative strengths for the blocking group at the end of training are
as follows: VB � 0.16, VG � 0.14, VW � �0.08. The same
calculation we used earlier gives us the following:PCorr � PRot �
0.39,PNear � PFar � 0.11. Thus, the model predicts 78% correct
responses from the blocking group on the test, a score almost
identical to that of the controls. These predictions are very close to
the actual results obtained by Wall et al. (2004; blocking group,
83%; control group, 75%).

Cheng’s (1986) Experiments 2 and 3.Cheng (1986, Experi-
ment 1) first trained rats in a working memory paradigm to find
buried food in one corner of a rectangular enclosure with distinc-
tive panels at all four corners. The location of the reward changed
randomly from trial to trial. Rats given extensive exposure to the
task eventually learned to relocate the place where they had just
sampled food, but they searched just as often in the rotationally
equivalent corner, showing that they retained geometric but not
featural information from a single trial. The current model cannot
account for the results of this experiment. Because it is essentially
a successive reversal procedure in which the rats must learn to
ignore all but the most recent location of the reward, we assume
factors not captured by the model come into play.

In his Experiments 2 and 3, Cheng (1986) trained rats in a
reference memory version of Experiment 1, in which the rewarded
corner was stable across training (Figure 2A). When the rats were
consistently searching in the correct corner, they were given sev-
eral tests. First, Cheng (Experiment 2) removed the features at the
correct and rotational corners (Figure 2B). Then (in Experiment 3)
he rotated all the features one corner clockwise, essentially per-
forming an affine transformation of the enclosure (Figure 2C).
Thus, the feature that had previously been at the correct corner
(and thus a good predictor of the reward) was now at the near
corner. The feature that had been at the near corner was at the
rotational corner and so on.

In the first test, Cheng (1986) found that rats searched primarily
at the correct and rotational corners but did not use the cues
provided by the remaining features (at the near and far corners) to
distinguish between them. In the second test, rats searched almost
equally at the correct, rotational, and near corners and almost never
searched at the far corner.

The model of this experiment requires, in addition to elements
B, G, and W introduced earlier, four more elements (F1, F2, F3,
and F4) representing the four panels placed at the corners. The first
column of Table 1 shows which elements are present at each
corner for this example. We set, as before, the initialVB to 0.1 and
set all other initialVs to 0. Figure 2 shows the associative strengths
and choice probabilities for the first 20 trials of this example.

As Figure 2 shows, four of the elements gain inhibitory (nega-
tive) strength: W (as in the previous example), F2 and F4, the
features at the incorrect corners, and F3, the feature at the rota-
tional corner. F3 gains the strongest inhibitory value. During
training, element F3 is always presented together with element G,
the geometry of the correct and rotational corners, but is never
rewarded. Element G is also presented with F1, the feature at the
correct corner, when it is rewarded. This is very similar to the
AX�, BX� discrimination task discussed by Rescorla and Wagner
(1972, p. 82). Eventually the element that is always unrewarded, in
this case F3, gains a strong inhibitory value (cf. our Figure 2 with
Rescorla & Wagner’s, 1972, Figure 6).

To model the tests performed by Cheng (1986), we apply the
test manipulations to the associative strengths and calculate the
choice probabilities. The columns labeledTest 1and Test 2 in
Table 1 (corresponding to Figure 2B and 2C) show which elements
are present at which corners for both tests. For the first test, in
which the panels at the correct and rotational corners were re-
moved, we setVF1 and VF3 to 0. All other associative strengths
retain their values from the end of training. The calculation (by
Equation 2) gives the following:PCorr � PRot � 0.4, PNear �
PFar � 0.1, consistent with the finding that the correct and rota-
tional corners were chosen equally often.

Kelly et al. (1998), in testing pigeons also trained in a rectan-
gular enclosure with a distinctive feature at each corner, found that
the pigeons still searched primarily at the correct corner when the
features at the correct and rotational corners were removed (see
Kelly et al.’s, 1998, Figure 3). This result conflicts with the results
obtained by Cheng (1986, Experiment 2). In this case, the pigeons
must have been using the remaining two features (at the near and
far corners) to disambiguate the correct corner from the rotational
corner. This is a mechanism not captured by the current model,
although it could be (several additional elements representing, e.g.,
the corner along a short wall from the blue feature would be
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required). These conflicting results demonstrate that there may be
species-specific differences in the types of elements and the rela-
tive salience of different elements encoded during learning. This
would be a fruitful area for future research.

The manipulation for Cheng’s (1986) second test is more com-
plex: Elements B, G, and W remain present at the same corners as
during training, because the geometry of the enclosure does not
change. However, element F1 is now moved, together with its
associative strength, from the correct to the near corner; F2 is

moved from the near to the rotational corner, and so on (Table 1,
column labeledTest 2; Figure 2C). The results predicted by the
model depend on the amount of training given. If the rats were
trained for a very long time, they would eventually search exclu-
sively at the corner containing F1 in the test. Calculating the choice
probabilities after 20 trials of training gives the following:PCorr �
PRot � 0.32,PNear� 0.42,PFar � �0.05. Obviously, the negative
result cannot be interpreted at face value (there is simply no check
in the model to avoid negative probabilities), but it emphasizes an
important point. The strong inhibitory value acquired by F3, which
was at the rotational corner during training, now causes subjects to
avoid the far corner, to which F3 is moved by the test manipula-
tion. This explains why Cheng’s rats spent the least amount of time
at the far corner during the affine transform test. A similar result
for an affine transform of features was reported for pigeons by
Kelly et al. (1998), in an operant version of the same task (Kelly
& Spetch, 2004b), and for fish (Sovrano, Bisazza, & Vallortigara,
2003). However, another explanation is also possible (Cheng,
2005a): The correct and rotational corners still have the same
geometry (they still contain element G), which was rewarded
during training; the near corner contains F1, the feature that was
rewarded during training; the far corner, in contrast, contains no
elements that were rewarded during training. Thus, without further

Figure 2. Model of Cheng (1986, Experiments 2 and 3). Panel A shows the training enclosure. The filled circle
represents the rewarded corner. The triangles at each corner represent the distinctive panels used by Cheng. Panel
B shows the test manipulation (Cheng, 1986, Experiment 2), whereby the panels at the correct and rotational
corners were removed. Panel C shows the affine transform test (Cheng, 1986, Experiment 3), whereby all the
panels are rotated by one corner. Panel D shows associative strengths for the model, and Panel E shows choice
probabilities for the model. F (in Panel A)� far corner; C� correct corner; R� rotational corner; N� near
corner; B� bowl; G � geometry of the correct corner; W� geometry of the incorrect corners; F1� feature
at the correct corner; F2� feature at the near corner; F3� feature at the rotational corner. F4 is not shown
because it is identical to F2.

Table 1
Elements Present at Each Corner During Training and Testing
in the Model of Cheng (1986, Experiments 2 and 3)

Corner Training Test 1 Test 2

Correct B, G, F1 B, G B, G, F4
Rotational B, G, F3 B, G B, G, F2
Near B, W, F2 B, W, F2 B, W, F1
Far B, W, F4 B, W, F4 B, W, F3

Note. B � bowl; G � geometry of the correct and rotational corners;
W � geometry of the incorrect corners; F1� feature at the correct corner;
F2� feature at the near corner; F3� feature at the rotational corner; F4�
feature at the far corner.
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tests, such as those suggested at the end of this article, it also
remains possible that the corner containing F3 is visited least
because it is the only corner that does not contain a formerly
rewarded geometric or featural cue (Cheng, 2005a).

Disorientation. In most studies of geometry learning, subjects
are thoroughly disoriented before the start of each trial, by rotating
the enclosure and/or the subjects themselves, so that only cues
within the enclosure are available (including its geometry). Wang
and Spelke (2002) described use of geometry as a mechanism for
reorientation. Similarly, Cheng (2005b) suggested that the geom-
etry of an enclosure is used as a cue only after disorientation.
These accounts imply that geometry is simply not processed if
subjects are well oriented or otherwise exposed to stable cues
outside the enclosure. However, the current model shows that even
if we assume oriented subjects do learn about geometry in the
same way as disoriented subjects, they learn less about it.

A nondisoriented subject may be assumed to have some cue to
the orientation of the enclosure relative to the outside world. This
is comparable with having a distinct feature at each wall or corner
indicating an absolute direction in the world. If the enclosure is
rotated between sessions, these cues do not accurately predict the
location of the food and merely serve to slow geometry learning by
causing the subject to make more errors during training by fol-
lowing irrelevant cues. To our knowledge, such a direct compar-
ison of geometry learning between disoriented and nondisoriented
subjects has not been reported, although there has been one report
of overshadowing of geometry learning by features in nondisori-
ented chickadees (Gray et al., 2005).

Other examples. The current model can be used to explain
several other results from the geometry-learning literature, partic-
ularly if we allow the values taken by� to vary, reflecting the
varying salience of different elements. It is likely that featural
information has a different salience than geometric information,
although the experimental data so far are unclear as to which is
greater (see, e.g., Kelly et al., 1998; Pearce et al., 2001), and it is
also likely that the relative saliences are species specific and
specific to the feature used, as well as specific to the shape of the
enclosure. For instance, Goutex, Thinus-Blanc, and Vauclair
(2001) found that rhesus monkeys learned about both features and
geometry as cues to a reward only when the features were large
and not when they were small (compare their Experiment 5 with
their Experiment 8 or their Experiment 6 with their Experiment 7).
The current model predicts similar results if we assume that large,
prominent features located in close proximity to the reward have a
higher salience than smaller, more distant features, making them
better able to enhance learning about geometry.

We can also model the different effects of features relative to
geometry in enclosures of different sizes. When young children are
tested in working memory tasks, geometry has greater influence in
small than in large enclosures (see Cheng & Newcombe’s, 2005,
Figure 2). A greater influence of geometric cues and a smaller
influence of features in smaller enclosures has been found in fish
(Sovrano, Bisazza, & Vallortigara, 2005) and chicks (Sovrano &
Vallortigara, 2006; Vallortigara, Feruglio, & Sovrano, 2005), and
a comparison across studies suggests that pigeons also show the
effect (see Bingman, Erichsen, Anderson, Good, & Pearce, 2006).
In the studies with fish and chicks, relative control by geometry
versus features was tested by transferring the animal from one
rectangular enclosure to one of a different size and/or by changing

the position of the features within the enclosure. If we allow the
salience of the geometry and features to vary in our model—with
geometry more salient in small enclosures than large ones and with
features less salient in small enclosures (see Vallortigara et al.,
2005, p. 399)—the current model matches the results of tests in
these studies.

A fuller understanding of the interactions between enclosure
size and feature salience must await experiments that directly
examine effects on geometry and feature learning of both feature
size and enclosure size by themselves. Such studies should also
control for the potentially confounding factor of feature size rela-
tive to enclosure size. Progress might also be made by distinguish-
ing between a whole colored wall and a corner panel as a feature
in such studies. A colored wall changes the feature present in two
corners of a four-sided arena and leaves the two empty corners the
same on a featural level, whereas a single corner panel changes
only one corner and leaves three the same. A setup with four
distinct corner panels, as in Cheng’s (1986) experiment modeled
earlier, is different again. The model indicates that these kinds of
arrangements may have different effects on behavior in later tests
with geometry alone.

Vargas, Lopez, Salas, and Thinus-Blanc (2004) trained goldfish
to locate a goal in one corner of a rectangular enclosure. The
corners could be disambiguated by a black feature that spanned
two adjacent walls of the tank, effectively creating a unique feature
at each corner. In Vargas et al.’s Experiment 3, the rewarded
corner was at one end of the feature (i.e., between a black wall and
a white wall). In Experiment 4, however, the rewarded corner was
in the middle of the feature, between two black walls. In the tests
of both experiments, the feature was rotated by 90°, thus placing
featural and geometric information in conflict, as in Cheng’s
(1986) affine transform test discussed earlier. Goldfish tended to
search at random in the test when the reward had been at one end
of the feature but followed the movement of the feature if the
reward had been in the middle of the feature (i.e., they continued
to search at the all-black corner). These results can be explained by
assuming that the all-black corner, in the middle of the feature, was
more salient than the black-and-white corner, adjacent to only one
feature wall (see our later discussion of Graham et al., 2006, for a
similar example involving rats). When the two-wall feature was
rotated by 90° for the test, fish searched least at the corner that was
between two blank walls (Vargas et al.’s, 2004, Figure 4). During
training, it was the rotational (geometrically correct) corner that
was between two blank walls. Thus, by the current model, the
blankness of the walls became a conditioned inhibitor, much like
the feature at the rotational corner in Cheng’s experiments, causing
the fish to shun it during the test. In a recent comment on this
article, Cheng (2005a) offered an explanation of these results that
was similar in spirit to the present account, in that he suggested
geometry is used along with other informative cues.

In an intriguing article, Tommasi and Polli (2004) trained chicks
to find food hidden in one corner of a parallelogram. When later
tested in a rectangle (in which the wall lengths and sense, but not
the corner angles, were preserved) or in a rhombus (in which
corner angles, but not wall lengths, were preserved), chicks were
able to use either type of cue to locate the correct corner. However,
when tested in a reversed parallelogram, in which wall lengths and
sense and corner angle were in conflict, chicks trained with the
reward at an acute angled corner followed the corner cues, whereas
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chicks trained with the reward at an obtuse angled corner followed
wall lengths and sense. In an additional control experiment, Tom-
masi and Polli found that untrained chicks have no innate prefer-
ence for approaching acute angled corners over obtuse angled
corners and suggested that a difference in the perceptual salience
of the two corner angles must have driven the results. Assuming
that perceptual salience translates into higher� for the acute
angled corner, the current model predicts the pattern of results
observed by Tommasi and Polli.

Multiple-Choice Model

Several important studies on geometry learning have been per-
formed on rats in water tanks of various shapes (e.g., Graham et
al., 2006; Pearce et al., 2001, 2006; Pearce, Good, Jones, &
McGregor, 2004). Some of the experiments in these studies show
overshadowing or blocking of geometry learning by features,
whereas others seem to show feature enhancement. For this reason,
they are well worth modeling. In a water tank, however, the animal
is usually allowed to swim on each trial until it locates the
platform. Thus, the probability of visiting the correct corner (the
platform) is always 1, but unless the subject is at asymptote, there
is also some nonzero probability of visiting each of the other
corners along the way. Therefore, the model presented in the first
half of this article needs to be modified to take multiple choices
into account. A detailed description of the calculation steps in-
volved is given in the Appendix. Here we give an informal
description.

We assume that the learning that occurs as a result of visits to
the various corners remains the same as in the original model.
Thus, the change in associative strength of an element E on a trial
where it is presented is given by Equation 3:�VE � �(� – VL)PL.
Here, as before,VL is the sum of the associative strengths of the
elements at corner L.PL stands for the overall probability of corner
L being visited on a given trial. When L is an incorrect corner, the
value ofPL is based on the fact that the subject may take various
paths that include this corner. For example, it may swim to corner
L and then to another unrewarded corner before finding the plat-
form in the correct corner. Or it may swim to two incorrect
corners, then corner L, then finally find the platform. We assume
that after visiting a particular corner, the subject will avoid that
corner for the remainder of that trial, which is the same as saying
that even if the subject revisits that corner on the same trial it does
not learn any more about the elements there. The probability of
taking a particular path to the correct corner is the product of the
probabilities of visiting each of the corners involved in that path
(see the Appendix and Table A1 for details). The overall proba-
bility of visiting a particular corner on a given trial (PL) is equal to
the summed probabilities of all the paths that include that corner.
Because all paths conclude at the correct corner, the overall prob-
ability of visiting the correct corner is 1.

On a given trial of the model, we first calculate the overall
probability of visiting each corner and then calculate the changes
in the associative strengths of each of the elements. The initial
probability of visiting each corner is calculated in the same way as
before (by Equation 2). For the correct corner, this is the proba-
bility of finding the platform (and terminating the trial) on the first
choice. Suppose, however, that the rat goes first to an incorrect
corner. We assume it makes its next choice among only those

corners yet unvisited, as determined by the relative total associa-
tive strengths of just those corners. That is to say, we use the same
calculation as before, but we take into account only the corners not
yet visited on that trial. Thus, there is a series of conditional
probabilities for each of the paths the subject can take. The overall
probability of visiting a particular corner on a given trial is the sum
of these probabilities, and this determines the changes in associa-
tive strength of the elements located at those corners (see the
Appendix for details).

Because all trials in the current model conclude with a visit to
the correct corner, what we have termedfeature enhancement
cannot occur as readily as in the examples above. The greater
associative strength of the correct corner as a result of a distinctive
feature there cannot increase the probability of visiting that corner,
because it is already 1. However, the feature can still affect the
choice probabilities by means of two related mechanisms. Note
first that it is only the overall probability of visiting the correct
corner, that is, the probability that this corner will be visited at
some point in the trial (PC), that is equal to 1; the probability of
visiting the correct corner first, notatedPC| (see the Appendix) is
still subject to the same influences as in the examples given earlier.
It is this probability that most affects the likelihood of visiting the
other, unrewarded corners because a visit to the correct corner
terminates the trial. Thus, by increasing the probability of visiting
the correct corner first (PC|), a feature at the correct corner can still
lower the overall probability of visiting an incorrect corner and by
so doing decrease the amount learned about other stimuli. Whether
this influence makes itself felt in a test depends on the details of
the procedure, because in a test with the feature removed, the
model predicts choices based on the relative associative strengths
of the remaining stimuli. Because all the associative strengths are
decreased by the addition of the feature, the relative amount by
which each decreases is important, and the feature may yet serve
to increase performance on the test (see, e.g., the example de-
scribed later from Pearce et al.’s, 2006, Experiment 1).

A feature can also affect the amount of learning about other
stimuli when it is in an incorrect corner. An inherently attractive
feature, such as that in the example from Graham et al. (2006)
described later, or a feature present at both correct and incorrect
corners (Pearce et al.’s, 2001, Experiment 4) may increase the
attractiveness of an incorrect corner. This increases the probability
of visits to the incorrect corner, and the feature serves to make
other stimuli, such as the geometry of that corner, more inhibitory.
This, in turn, improves performance in tests in the absence of the
feature by decreasing choices of the incorrect corners.

Once the additional experience with the incorrect corners is
taken into account, the model still predicts the probabilities of
choosing each of the corners first on each trial of an experiment.
However, choice is not a popular measure of learning for experi-
ments conducted in a water tank. Often latency to arrive at the
platform is the measure of acquisition, and results of test trials with
the platform absent are reported as a proportion of some fixed
time, usually a minute or so, in the quadrant of the tank where the
platform should be found. In some of the experiments by Pearce
and his colleagues (e.g., Pearce et al, 2006) discussed later, per-
formance is presented as the proportion of trials in which the rats
entered the correct corner of the tank before entering some other
corner, such as the rotational corner. This measure does not nec-
essarily correlate well with first choices given by the model (cf.,
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e.g., Pearce et al.’s, 2004, Figure 2 panels that show first choice
and correct choice for the same rats). We have avoided, in most
cases, modeling those experiments for which only this type of data
is available. In some cases, we have modeled experiments where
test results are given as a proportion of time spent in a particular
quadrant; where we have done so, we have assumed that this
measure correlates with choice. This may not be entirely correct,
as quadrant preference might be expected to attenuate over a
minute of unreinforced swimming, an effect that the model does
not capture.

Results

We focus on three articles that have provided important data on
cue competition (Graham et al., 2006; Pearce et al., 2001, 2006)
and on experiments in those articles in which the data are largely
presented in a manner consistent with the output of the model. In
some of these experiments, a rectangular tank was used, and in
others, two novel unambiguous shapes—an isosceles triangle (Fig-
ure 3, inset) and a kite shape (an irregular quadrilateral; Figure 4,
inset). In addition, the features added to the differently shaped
enclosures indicated the goal unambiguously in some experiments,
whereas in others the same feature was shared by the goal and one
other location. Furthermore, in some cases, unrewarded locations
all shared the same feature, and in others each unrewarded location
had a different feature. It is not surprising, given these variations
in the potential informativeness of both the geometric and the
featural cues, that as a group these studies contain evidence for
every possible kind of cue interaction in the control of choice.
Pearce et al. (2001) and Graham et al. (2006) presented results
consistent with a lack of cue competition or with potentiation
(feature enhancement), whereas Pearce et al. (2006) found some
evidence for overshadowing and blocking. Nevertheless, most of
the results can be modeled on our assumption of underlying

competition for associative strength between geometric and fea-
tural cues.

All models were run for 20 trials before testing. In the experi-
ments modeled, rats were trained for between 9 and 17 sessions of
4 trials each. As with the single-choice model, a trial of the model
does not necessarily correspond to a trial or session in the exper-
iment. Because, in the multiple-choice version of the model, the
choice probabilities are summed over all possible paths to the goal,
it was found that using a value of 0.15 for�, as earlier, caused the
model to reach asymptote within a very few trials, and transient
differences between groups (such as feature enhancement, usually
observed only early in training) were lost. Therefore, in the next
examples, all values of� were set at 0.04, unless stated otherwise.
All other details are as described earlier. As a result of the lower
� value, the changes in the choice probabilities and associative
strengths in this version of the model are more gradual than those
of the single-choice version. To demonstrate the calculation steps
involved in the multiple-choice version of the model, in the Ap-
pendix we model the same example as for the single-choice
version as if it had been run in a water tank.

Pearce et al.’s (2001) Experiments 3, 4, and 5.Pearce et al.
(2001, Experiment 3) trained three groups of rats to find a sub-
merged platform in one of the two corners at the base of a
triangular water tank with a curved base (see Figure 3). Unlike the
case in any of the experiments modeled in the first part of this
article, the geometry of this enclosure was unambiguous (i.e., each
corner had a unique combination of angle, wall lengths, and sense
as well as a unique relationship to the principal axis of the
enclosure). Therefore, our model of the experiment assigns a
different geometric element to each corner. During training, the
beacon group additionally had a distinctive beacon attached to the
platform, which was always in the same corner. There was also a
no-beacon group. Finally, the random group had a beacon attached

Figure 3. Model test results and corresponding data for Pearce et al. (2001, Experiment 3). Panel A shows the
percentage of time spent in the correct and incorrect quadrants by the three groups during the first 15 s of an
unrewarded test trial. Panel B shows model choice probabilities for the correct and incorrect corners after 20
trials of training for the three groups. The inset shows the triangular water maze used for the experiment. The
black circle represents the platform. A� apex; C� correct corner; I� incorrect corner. Panel A is from
“Influence of a Beacon on Spatial Learning Based on the Shape of the Test Environment,” by J. M. Pearce, J.
Ward-Robinson, M. Good, C. Fussell, & A. Aydin, 2001,Journal of Experimental Psychology: Animal Behavior
Processes, 27,p. 336.
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to the platform, but the location of the platform (with the beacon)
varied randomly between the two corners at the base of the
triangle. When all three groups were given a probe test in an
enclosure with no beacon or platform, only the beacon and no-
beacon groups spent significantly more time in the correct than in
the incorrect quadrant of the pool (see Figure 3A). Thus, Pearce et
al. concluded that the beacon did not overshadow learning about
the shape of the enclosure, consistent with claims that geometry is
learned in an independent module.

In the model of this experiment, there are three locations where
the rats can search, labeledcorrect, incorrect, and apex (see
Figure 3, inset). The model has five elements: Element B, as in the
single-choice examples, represents contextual features present at
all three corners; element F represents the beacon attached to the
platform for the beacon and random groups, which is present only
at the rewarded corner; element G represents the geometry of the
correct corner; element I represents the geometry of the incorrect
corner at the base of the triangle; and element A represents the
geometry of the apex. The initial associative strength for element
B, as earlier, is set to 0.1. All other elements start with aV of 0.

The equations forV can be derived from Equation 3. The
equations for the random group have two terms, each multiplied by
0.5, reflecting the fact that the platform is sometimes at the
geometrically correct corner and sometimes at the geometrically
incorrect corner. For the no-beacon and the beacon groups, for
which geometry is a good predictor of the platform, the geometry
of the correct corner (G) acquires more associative strength than it
does for the random group, for which the geometry is ambiguous.
This is reflected in the results of the tests, in which the geometry
of the enclosure is the only available cue.

Figure 3B shows the results of the modeled test, with the beacon
removed (VF � 0). Figure 3A shows the experimental results,
reproduced from Pearce et al.’s (2001) Figure 5. The results of the
model match the experimental results well. The presence of the
beacon at the correct corner during training causes the beacon
group to learn less about the correct geometry than the no-beacon
group (at the end of training, the model gives the following: the
beacon group,VG � 0.29; the no-beacon group,VG � 0.41); that
is, there is some overshadowing as predicted by standard associa-
tive models, but this difference is not apparent in the test with the

Figure 4. Model results and corresponding data for Graham et al. (2006, Experiment 1). Panel A shows
acquisition data for the three groups of the experiment. Panel B shows the model’s correct first choice
probabilities (PC) for 20 trials of training. Panel C shows overall percentage of time spent in the correct and
incorrect quadrants by the three groups during the 1-min test trial. Panel D shows model choice probabilities for
the correct and incorrect corners after 20 trials of training for the three groups. The inset shows the kite-shaped
water maze used for the experiment. The black circle represents the platform. O� obtuse corner; C� correct
corner; I� incorrect corner; A� apex. Panels A and C are from “Spatial Learning Based on the Shape of the
Environment Is Influenced by Properties of the Objects Forming the Shape,” by M. Graham, M. A. Good,
A. McGregor, & J. M. Pearce, 2006,Journal of Experimental Psychology: Animal Behavior Processes, 32,
p. 47.
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beacon absent. In the test, the choices made by the subjects do not
depend solely on the value ofVG but also depend on the associa-
tive strengths of elements at the other corners. Recall that the
probability of a particular corner being chosen is proportional to
the associative strengths of elements present at that corner divided
by the associative strengths of all the elements. Thus, for example,
the no-beacon group in the current example also learns to avoid the
geometric cue at the incorrect corner more than the beacon group
(the no-beacon group,VI � �0.065; the beacon group,VI �
�0.05). This serves to decrease the difference between the groups
as it decreases the relative weight of the correct geometry (element
G) in the choice probability calculation (Equation 2) for the
no-beacon group relative to the beacon group. Only the random
group, for whom both the correct and incorrect corners were
rewarded equally often (i.e.,VI � VG), visit the incorrect corner
just as often as the correct corner at test in the absence of the
beacon.

In Pearce et al.’s (2001) Experiment 4 an additional control
group, trained with two identical beacons at the correct and incor-
rect corners, was used to support the conclusions of the first
experiment. Finally, in Experiment 5, Pearce et al. investigated
whether the apparent lack of cue competition would extend to a
blocking paradigm. The training for all three groups in this exper-
iment was similar to the training for the groups in the previous
experiments, except that the blocking and random groups were
given prior experience with the beacon alone in the absence of
geometric cues. This was modeled by giving the beacon element
(F) a higher initial associative strength (VF � 0.3) for these groups
in the second phase of training when geometric cues were intro-
duced. In the test, the blocking group preferred the geometrically
correct corner (i.e., this group’s choices showed no evidence of
blocking), whereas the random group, for which geometry had not
predicted the location of the platform, did not prefer the geomet-
rically correct corner. The model matches these results well (not
shown). These groups are modeled in the same way as the corre-
sponding groups in Experiment 3, except that the initial value of
VF is higher. Again, the expected cue competition effect is seen in
the blocking group if one looks only at the associative strength of
the geometrically correct corner at the time of test (VG � 0.15 for
the blocking group vs. 0.22 for the control group), but this is
counteracted by the other terms in Equation 2. However, the model
cannot explain why the control group, trained from the outset with
the beacon and platform in a consistent location, failed to discrim-
inate between the correct and incorrect quadrants in the test. The
control group was trained in the same way as the beacon groups in
the previous experiments but for fewer trials. Pearce et al. sug-
gested that the small number of training sessions led to the control
group not learning the task.

In summary, Pearce et al. (2001) used an unambiguous triangu-
lar water maze and found—as did Wall et al. (2004) and others
who have used food rewards in geometrically ambiguous enclo-
sures—no overshadowing or blocking of geometry learning by a
beacon. Our competitive learning model with multiple choices per
trial explains these findings well, contrary to Pearce et al.’s con-
clusion that “spatial learning based on the shape of a test environ-
ment may not take place in the same way as that based on more
discrete landmarks” (p. 329).

Graham et al. (2006). Graham et al. (2006), using a geomet-
rically unambiguous kite-shaped water tank (Figure 4, inset), also

found no evidence for cue competition. Indeed, under some con-
ditions, they found clear evidence of potentiation of geometry
learning by a feature. An important way in which their experiments
differ from those of Pearce et al. (2001) is in the feature at the
correct corner. When used, this consisted of two whole adjacent
walls of the enclosure being black. This feature actually makes
every corner different: One is all black, one is all white, one is
black on the left and white on the right, and one is black on the
right and white on the left. The model treats this as four separate
features, one at each corner. Note that we do not model possible
generalization effects from one feature or corner to another, al-
though these may play a part in the rats’ choices.

Graham et al. (2006) used several similar groups in all three of
their experiments. Some rats were trained with the escape platform
always in the same 90° corner and always in an all-black (or
all-white corner). For these groups, both the geometry and the
color were good predictors of the platform. We call these the SC
groups (in Graham et al.’s, 2006, notation, shape� color). Other
groups were trained with the platform always in the same corner,
but the color of the corner (all black or all white) varied randomly
from trial to trial, thus making color a bad predictor of the
platform. We call these the S groups (shape only). Some groups
were trained with the platform always surrounded by the same
color walls, but the location of the platform and the black walls
varied randomly between the rewarded and the opposite 90° cor-
ner, making only color a good predictor of the platform’s location.
We call these the C groups (color only). In Experiments 2 and 3,
two groups also had a beacon at the platform during training. We
call these the SCB groups (shape� color � beacon) and the SB
groups (shape� beacon). Finally, in Experiment 3, one group was
trained in an enclosure with all four walls the same color and the
platform always in the same location. We call this group the SNC
group (shape� no color).

In Experiment 1, three groups of rats were trained: SC, S, and C.
The SC and C groups always had the platform at an all-black
corner (never all white). Throughout training, the S group per-
formed significantly worse than the other two groups (see Figure
4A). After 20 sessions of training, all three groups were tested in
an enclosure that had four black walls, thus eliminating wall color
as a discriminative cue. Only the SC group spent more time in the
correct than in the incorrect quadrant in the test (Figure 4C).

Throughout this experiment and the experiments that followed,
Graham et al. (2006) found that rats were attracted to the corner
surrounded by two black walls, whether or not this corner con-
tained the platform (see pp. 50–52). Rats consistently approached
this corner first significantly more often than other corners, even
on the first trial of training. This implies that the black walls had
a high salience and also that the rats had an innate preference for
the black corner. This preference is reflected in the model by
assuming that the element representing wall color at the all-black
corner has an initial associative strength that is higher than 0 and
an � value that is higher than that of the other elements. It is
possible, alternatively, that the black corner is only innately at-
tractive and does not have a higher salience (see Graham et al.,
2006, p. 48). A version of the model incorporating only this
assumption gave the same pattern of results, but it did not match
the data as well as the model that also assumed a higher�. The
model with both an innate attraction and an increased salience of
the all-black corner is presented.
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Rats may encode the geometry of the kite-shaped enclosure in
several different ways. For instance, if they encode the size of the
corner angle our model should contain an element representing the
fact that the correct corner and the one opposite to it are both 90°
corners. Each corner of the kite-shaped enclosure is geometrically
unique, and this too could be represented by additional elements in
the model, one for the geometry of each corner. Models of the
experiment were constructed both with and without all these
elements, and the effect of the added elements on the results was
negligible. For simplicity, they are not included in the model as
presented. Thus, the elements of our model are as follows: B,
contextual features common to all corners; G, the geometry of the
correct corner; and F1–F4, the colors of the walls at the various
corners. For the SC group, for which the wall colors and the
location of the platform are stable, F1 is always at the correct
corner, F2 is always at the opposite 90° corner, and F3 and F4 are
always at the obtuse and apical corners, respectively.

We set the initial associative strength of element B to 0.1, as in
all other examples. The initial associative strength of the black
wall element (F1) is set to 0.3, and its� value is set to 0.08, to
reflect the rats’ preference. All other� values are set at 0.04, and
the remaining initial associative strengths are set at 0. As might be
expected, the model predicts that the two groups for which the
salient black corner predicts the location of the platform (the C and
SC groups) learn faster than the S group, as reported by Graham et
al. (2006; see our Figure 4A). Figure 4B shows the model of this
experiment, which matches the pattern of Graham et al.’s data,
except for the obvious ceiling effect in their data. Note also that
Figure 4A shows the percentage of trials on which the rats chose
the correct corner without first choosing the opposite 90° corner,
whereas the model predictions in Figure 4B represent the proba-
bility of visiting the correct corner on the first choice.

Figure 4C and Figure 4D present the experimental and model
test results. Note the model does not predict the main finding of
this experiment, a greater preference for the correct location by the
SC group than by the S group. It should be kept in mind that the
model predicts first choices, which may not correlate exactly with
quadrant preference in the experimental test.

Experiment 2 of the same article was designed to address
whether the wall-color cues in Experiment 1 had given an advan-
tage to the SC and C groups over the S group by adding a beacon
to the platform to aid the groups for which color was not a good
predictor of the platform. Thus, this experiment consisted of the S,
SC, SB, and SCB groups. Half of the rats in each of the four groups
were trained with the platform in an all-white corner, and the other
half were trained with the platform in an all-black corner. Each
group was then tested in a kite-shaped enclosure in which all four
walls were the same color as the walls around the rewarded corner
during training for that group (so rats trained with the platform in
an all-black corner were tested in an all-black enclosure, etc.). The
platform and beacon were removed during the test.

During training, the SC and SCB groups performed consistently
better than the other two groups (see Figure 5A). During the test,
consistent with the acquisition results, the same two groups
showed a stronger preference for the correct quadrant over the
incorrect quadrant than did the corresponding groups for which
color was not a good predictor of the platform.

In modeling this experiment, groups trained with the platform in
an all-black corner must be modeled separately from groups
trained with the platform in an all-white corner, as the increased
salience and attractiveness of the all-black wall-color element
causes the two halves of each group to behave differently. Thus,
there are actually six groups in the current model: SCB (black),
SCB (white), SC (black), SC (white), SB, and S. The SC (black)
and S groups are identical to the corresponding groups in the
previous experiment. In displaying the results, the data from the
two halves of each group are averaged, as they are in Graham et
al.’s (2006) presentation (see Graham et al.’s, 2006, Figures 4, 5,
and 6).

The elements of this model are identical to those of the model
for the previous experiment, with the exception of one additional
element, N, representing the beacon attached to the platform for
the SCB and SB groups.

Figure 5B shows the probability of a correct first choice for the
first 20 trials of the model. Figure 5A shows first corner choices
reproduced from Graham et al.’s (2006) Figure 4. The model

Figure 5. Model of Graham et al. (2006, Experiment 2). Panel A shows the percentage of times subjects chose
the correct corner on their first choice over the course of training for the four groups. Panel B shows the model’s
probabilities of first choice of the correct corner for the first 20 trials of training. Panel A is from “Spatial
Learning Based on the Shape of the Environment Is Influenced by Properties of the Objects Forming the Shape,”
by M. Graham, M. A. Good, A. McGregor, & J. M. Pearce, 2006,Journal of Experimental Psychology: Animal
Behavior Processes, 32,p. 50.
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correctly predicts the relative success of the various groups in
locating the platform on the first choice, except that a minor
difference between the SCB and SC groups, present in the model,
is not seen in the experimental results. This may be a result of a
ceiling effect, because the experimental rats were close to asymp-
totic at the end of training, and the model is not.

The model does not correctly predict the results of the unre-
warded test for this experiment. Although, at the end of acquisi-
tion, the two groups for which color is relevant are performing
better than the other two groups, the model predicts that the two
groups for which color is not relevant have learned more about the
geometry (i.e., have a higherVG) and should thus do better in the
test. The model here predicts quite different results for the groups
trained with the reward in the all-black corner than for the groups
trained with the reward in the all-white corner. This difference is
not observed in the data (kindly provided to us by John Pearce,
personal communication, January 31, 2007). The experiments by
Pearce et al. (2006) modeled later explore this type of difference in
more detail.

The final experiment of Graham et al. (2006) was designed to
test the possibility that the groups in the previous experiments for
which color was not a good predictor of the reward were adversely

affected by the random changes in wall color from trial to trial.
Thus, a third group was added, the SNC group, which was tested
in an enclosure with 4 walls of the same color. For half of the rats
in this group, the walls were black, and for the other half, the walls
were white. The remaining groups, SC and S, were trained in the
same manner as in the previous experiment. All three groups had
a beacon attached to the platform during training. Before testing,
Graham et al. gave all three groups an unrewarded probe trial in
their training enclosures. This probe trial was repeated after the
test.

The results of the two probe trials are presented in Figure 6A
and Figure 6B. All three groups spent significantly more time in
the correct than in the incorrect quadrants when trained and tested
with the platform in an all-black corner (see Figure 6A). However,
only the SC group performed better than chance when trained and
tested in an all-white corner (see Figure 6B).

The SC and S groups in this experiment are modeled in the same
way as the corresponding groups in the previous experiment. The
model for the SNC group has elements B, G, and N, as before. In
addition, for that half of the group that was trained in an all-black
enclosure, given what we know of the attractiveness of all-black
corners, an additional element, F, was added, present at all corners

Figure 6. Model probe test results and corresponding data for Graham et al. (2006, Experiment 3). Panels A
and B show the overall percentage of time spent in the correct and incorrect quadrants by the three groups during
the probe trial. Panel A shows rats trained and tested with the platform in an all-black corner. Panel B shows rats
trained and tested with the platform in an all-white corner. Panels C and D show the model’s first choice
probabilities for the correct and incorrect corners after 20 trials of training for the three groups in each training
condition. Panels A and B are from “Spatial Learning Based on the Shape of the Environment Is Influenced by
Properties of the Objects Forming the Shape,” by M. Graham, M. A. Good, A. McGregor, & J. M. Pearce, 2006,
Journal of Experimental Psychology: Animal Behavior Processes, 32,p. 54.

204 MILLER AND SHETTLEWORTH



(because all the corners are all-black for this group), with a high
initial associative strength (V � 0.3) and increased salience (� �
.08).

Figure 6C and Figure 6D show the model’s results for the
unrewarded probe trials. Figure 6A and Figure 6B show the
experimental results, reproduced from Graham et al.’s (2006)
Figure 8. The model correctly predicts that the SC group performs
well whether the rewarded corner is black or white, whereas the S
group performs better when the rewarded corner is black than
when it is white. This is an effect of the innate attractiveness of the
all-black corner, which leads to it being visited often whether it is
rewarded or not. In Graham et al.’s data, the SNC group trained
and tested in an all-white kite shape had a smaller preference for
the correct corner than the comparable group trained and tested in
the black kite shape. The latter group’s preference for the correct
corner was more robust through several tests. The model does not
predict this, although it is possible that being surrounded by
all-black versus all-white walls in a water tank has motivational
and/or behavioral effects on the rats that influence amount of
learning.

In summary, Graham et al. (2006) used a geometrically unam-
biguous kite-shaped enclosure to search for overshadowing of
geometry learning by a black feature that spanned two walls of the
enclosure. This large feature serves to uniquely identify every
corner of the enclosure. In addition, Graham et al. observed that
the all-black corner was more attractive than the other corners,
whether or not it was paired with a reward. We modeled this innate
attractiveness by assuming a high initial associative strength and a
higher salience for this corner than for the remaining corners. The
model correctly predicts the patterns of acquisition of all three
experiments but fails to explain the potentiation of geometry
learning by the feature seen in the tests of Experiments 1 and 2.

Pearce et al. (2006). Pearce et al. (2006) used both rectangular
and kite-shaped enclosures that also had black features spanning
two walls. In contrast to the experiments of Graham et al. (2006)
and Pearce et al. (2001), they demonstrated both overshadowing
(Experiment 2) and blocking (Experiments 3 and 4) of geometric
cues by such features. Most intriguingly, in Experiment 1, Pearce
et al. (2006) found overshadowing in a rectangular enclosure and
potentiation in a kite-shaped enclosure. In that experiment, they
trained two groups of rats in a kite-shaped enclosure (K groups)
and another two in a rectangular enclosure (R groups). Note that
the kite-shaped enclosure was geometrically unambiguous (like
the triangular enclosure used by Pearce et al., 2001), whereas the
rectangular enclosure was ambiguous. In each shape, one group
was trained in an all-white enclosure (the KW and RW groups),
and another group was trained in an enclosure with two white and
two black walls (the KBW and RBW groups). The correct corner,
in all cases, was flanked by two white walls, as illustrated in Figure
7B. A beacon was attached to the platform for all groups. After
training, all groups were tested in an all-white enclosure that
matched the shape in which they were trained. Because only
geometric information was available in the test, only geometrically
correct or incorrect choices were measured. Thus, for the R groups,
chance performance was 50%, and for the K groups it was 25%.
The KBW group performed better on the test than the KW group,
implying that geometry learning was potentiated by the wall-color
cues in the kite, whereas the RW group performed better on the test
than the RBW group, implying that the wall-color cues had over-

shadowed geometry learning in the rectangle. These results are
consistent with the results of Pearce et al. (2001), who found a lack
of overshadowing in an unambiguous triangular enclosure. In the
2001 experiment, the no-beacon group learned more about the
geometry of the triangle than the beacon group, just as the KW
group in the present experiment learned more than the KBW
group. There are, however, differences in the performance of the
models of the two experiments, which result from differences in
the experimental paradigm. The beacon group in Pearce et al.
(2001), for example, had an attractive feature at the correct corner
to follow, whereas the KBW group in the present study had an
attractive feature in an incorrect corner. These differences affected
the number of errors (visits to unrewarded corners) that the sub-
jects made during acquisition, and these in turn affected how much
they learned about the various cues in the enclosure. We explain
this in detail for the KW and KBW groups later.

The model of this experiment has eight elements, the distribu-
tion of which varies from group to group. For the R groups, we
have the following: B, contextual elements present at all corners;
G, the geometry of the correct and rotational corners; W, the
incorrect geometry (of the near and far corners); and N, the beacon
attached to the platform. For the RBW group, we add elements
F1–F4, the features (distinct wall colors) at each corner, as earlier.

Figure 7. Comparison of the percentage of associative strength captured
by VG for the four groups in the model of Pearce et al. (2006, Experiment
1) for the first 20 trials of training. Panel A shows %VG � [VG/(VB �
VG � VW)] 	 100. Panel B shows the training enclosures used for the
experiment for each group. The black circle represents the rewarded
corner. The heavier lines represent the walls that were black. RBW�
rectangle black-and-white group; KBW� kite black-and-white group;
RW � rectangle white group; KW� kite white group.
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The K groups have the same elements, with two important differ-
ences: G, the geometry of the correct corner, is present only at the
correct corner in the kite, because the geometry of the kite is
unambiguous, and, W, the geometry of the incorrect corner, is
present only at the opposite 90° corner in the kite. In modeling
previous experiments in kite-shaped enclosures (e.g., Graham et
al., 2006), we do not include an element for the incorrect geometry
when this is also disambiguated by the features, but in this case an
element was added to facilitate comparisons of the K groups with
the R groups. Omitting element W was found to have only a
negligible effect on the results. In this experiment, the highly
attractive all-black corner is always the rotational or opposite
corner, not the correct corner. Thus, this element, F2, has a high
initial associative strength (V � 0.3) and a high salience (� � .08)
for the RBW and KBW groups.

When modeling any test, the associative strengths of the various
elements present at the time of the test are taken from the end of
training, and a single trial of the model is calculated to give the test
choice probabilities. Thus, the distribution of choices follows the
relative associative strengths of the elements. In the present ex-
periment, the only elements present in the test, in an all-white
enclosure with no beacon, are B, G, and W. Of these, only G is a
predictor of the rewarded location. Thus, the percentage of choices
of a geometrically correct corner depends on the relative weight of
VG in the sumVB � VG � VW. Figure 7 shows the percentage of
this sum accounted for byVG as a function of trial for all four
groups. It can be seen that the RW group does better than the RBW
group and that this is reversed for the K groups (KBW does better
than KW). Because the test results are directly proportional to the
value plotted here, this model predicts the pattern of results ob-
served by Pearce et al. (2006). In addition, because the lines do not
cross each other (i.e., the relative positions of the groups do not
change over the course of training), the model predicts that the
same result is obtained regardless of the stage of training at which
the animals are tested. As the next example shows, this is not
always the case.

Why does the relative associative strength of element G vary as
it does between the different groups? Indirectly, this reflects the
difference between geometrically ambiguous enclosures, such as
the rectangle, and enclosures that are unambiguous, such as the
kite. The geometric ambiguity gives rise to several differences
between the two groups. For example, the R groups make many
more rotational errors than the K groups, primarily because the
probability of such errors (PR) in the R groups is partially depen-
dent on element G, which is also present at the correct corner. This,
in turn, gives rise to a first important difference between the effects
of features in the two groups: The all-black feature (F2) in the
RBW group has the effect of increasing the number of rotational
errors early on (because it is innately attractive) and decreasing
them later on as this feature becomes a powerful conditioned
inhibitor. Thus, in later trials, the RW group makes more rotational
errors than the RBW group. The situation is reversed in the K
groups. Here, there are fewer errors to the opposite 90° corner
early on in the KW group, because this corner is not more attrac-
tive than the correct corner and quickly becomes less attractive and
because the opposite corner is sufficiently disambiguated from the
correct corner by the geometry itself. Members of the KBW group,
on the other hand, are attracted to the opposite 90° corner by the
feature there, but they visit it less often than members of the RBW

group, because the geometry of the enclosure disambiguates the
opposite corner from the correct corner. As a result, the all-black
wall-color element (F2) becomes a weaker conditioned inhibitor in
the KBW group than it is in the RBW group, and the KBW group
continues to make more rotational errors than the KW group. The
model does, however, predict that the KBW and RBW groups
make more correct choices than the KW and RW groups, respec-
tively, soon after the start of training, as found by Pearce et al.
(2006, Figure 1). This is due to the W groups making more visits
to geometrically incorrect corners (i.e., near and far corners in the
rectangle and apex and obtuse corners in the kite) than the BW
groups, most of whose errors are visits to the attractive black
corner opposite the corner with the platform.

A second effect of the geometric ambiguity is apparent in the
course of the changes in the associative strength of the incorrect
geometry, element W. The equations for this element for all four
groups are as follows:

RBW group,�VW � ��0 � VBWF3�PN � ��0 � VBWF4�PF; (10)

RW group,�VW � ��0 � VBW�PN � ��0 � VBW�PF; (11)

KBW group, �VW � ��0 � VBWF2�PR; (12)

KW group, �VW � ��0 � VBW�PR. (13)

Comparing first the two equations, for the R groups, it can be seen
that the RW group learns more about element W than the RBW
group (i.e.,VW is more negative). This is becauseVF3 is negative
(element F3, the wall color at the near corner, is also a conditioned
inhibitor) and because the RW group makes, over the course of
training, more visits to the incorrect corners than the RBW group
(as explained earlier). Among the K groups, however (Equations
12 and 13), the KBW group learns more than the KW group about
element W, both because of its higher prevalence of rotational
errors and because of the large initial associative strength of the
all-black wall-color element (F2). Thus, the distribution ofVW

among the groups mirrors the test results.
In Experiment 2, to further examine the interactions between

large black wall-color features and the geometry of a rectangular
enclosure, Pearce et al. (2006) placed the black walls opposite each
other, so that either the two long walls or the two short walls of the
enclosure were black. Of importance, the color of the walls here
does not provide any additional information beyond that provided
by the geometry of the rectangle.

Three groups of rats were trained in the rectangular enclosure.
For the experimental group, the two long walls of the enclosure
were black, and the two short walls were white. The control–W
group was trained in an all-white enclosure, and the control–BW
group was trained in an enclosure in which either the long or short
walls were black, and this varied randomly from trial to trial. Thus,
for this group, the color of the walls (or, equivalently, the left–right
arrangement of black and white walls at the corners) was not a
good predictor of the location of the platform. None of the groups
had a beacon attached to the platform. All three groups were later
tested in an all-white enclosure.

During training, the experimental group, which could use both
wall color and geometry, consistently performed better than the
other two groups (Figure 8A). However, in the test, the experi-
mental group performed significantly worse than the other two
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groups (Figure 8C). Pearce et al. (2006) concluded that the pres-
ence of the black walls overshadowed learning about the geometry
in this group, consistent with the findings of overshadowing in the
rectangle in the previous experiment.

To model this experiment, we use the three elements familiar
from previous models of rectangular enclosures: B, G, and W. In
addition, for the experimental and control–BW groups, we add two
elements (F1 and F2) representing the color of the walls. For the
experimental group, F1 is present at the correct and rotational
corners, and F2 is present at the near and far corners. For the
control–BW group, these two elements vary between the geomet-
rically correct and incorrect corners from trial to trial. Note that
because elements F1 and F2 are present at the same corners as
elements G and W, they do not provide any additional information.
Additionally, the arrangement of the black walls in this experiment
causes each corner of the enclosure to be between a black and a
white wall. Thus, in this experiment, there is no feature with a

higher salience or innate attractiveness than the others. Finally,
because there is no way to distinguish geometrically identical
corners in any of the three groups (i.e., correct from rotational or
near from far), all choices to geometrically identical corners are
summed for both training and test as they are in Pearce et al.’s
(2006) presentation.

Because, for the control–BW group, the incorrect geometry (W)
is sometimes paired with the color of the walls associated with the
correct corners (F1), this group visits the incorrect corners more
often, and the incorrect geometry acquires more inhibitory value in
this group than in the experimental group. The presence of this
confusing cue in the control–BW group initially causes this group
to perform worse than the control–W group, which is not attracted
to the geometrically incorrect corners by a feature; this effect is
barely visible in Figure 8B. The experimental group, which has
two reliable cues to the location of the platform (the geometry and
the wall color), performs best throughout training. Figure 8B

Figure 8. Model results and corresponding data from Pearce et al. (2006, Experiment 2). Panel A shows the
percentage of times subjects chose the correct corner over the course of training for the three groups of the
experiment. Panel B shows the model choice probabilities for the correct corner for the three groups over the first
20 trials of training. Panel C shows the percentage of time spent in the correct quadrant by the three groups
during the test trial. Panel D shows the model’s test choice probabilities for the correct and incorrect corners after
20 trials of training for the three groups. B� black; W � white; PCorr � probability of searching the correct
corner. Panels A and C are from “Potentiation, Overshadowing, and Blocking of Spatial Learning Based on the
Shape of the Environment,” by J. M. Pearce, M. Graham, M. Good, P. M. Jones, & A. McGregor, 2006,Journal
of Experimental Psychology: Animal Behavior Processes, 32,pp. 206 and 207, respectively.
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shows the probability of a correct choice for the first 20 trials of
this model. Figure 8A shows the first choice data reproduced from
Pearce et al. (2006, Figure 3). Figure 8 shows the test predictions
of the model (Figure 8D) and the experimental data (Figure 8C;
reproduced from Pearce et al.’s, 2006, Figure 4). The model
correctly predicts that the experimental group performs worst on
the test. In neither model nor data are the differences among the
groups very large.

In Experiment 3, Pearce et al. (2006) attempted to reproduce the
overshadowing results from Experiment 2, using a blocking par-
adigm. An experimental group and a control group were first
trained in a square enclosure that had two adjacent black walls.
The platform, for both groups, was in a corner that was between a
white wall and a black wall (e.g., black on the left, white on the
right). After 14 sessions of training, both groups were given
additional training in a rectangular enclosure that also had two
adjacent black walls. For the experimental group, the platform was
in a corner consistent with the color of the walls during training
(e.g., black on the left, white on the right). For the control group,
the rewarded corner now had wall colors opposite to those used
during training (e.g., white on the left, black on the right). After a
further 14 sessions of training, both groups were tested in either an
all-black or all-white enclosure, without a platform. This test was
repeated after 8 further sessions of training.

In the first test, neither group spent significantly more time in
the correct than in the incorrect quadrant. However, in the second
test, the control group performed significantly better than chance.
Pearce et al. (2006) concluded that, with sufficient training, pre-
vious experience with the black walls blocked learning about the
geometry in the experimental group.

Because the first phase of the experiment already contains a
distinctive cue at each corner (provided by the two black walls),
we begin by modeling this phase. All elements carry the associa-
tive strength they have at the end of this phase to the next phase of
training (in the rectangle). Both groups have the same elements: B,
present at all corners, and F1–F4, representing the distinctive wall
color at each corner. There are no geometric cues in this phase of
the experiment. It is possible to assume, as we did earlier, that the
all-black corner has a higher salience and innate attractiveness than
the other corners. A version of the model incorporating this as-
sumption was constructed, and it was found that the difference it
made to the results was negligible (because the all-black corner is
never rewarded). For the second phase of the experiment, when
both groups were trained in a rectangular enclosure, two more
elements were added to the model: G, the rewarded geometry, and,
W, the incorrect geometry.

In the second phase of training, the experimental group is
rewarded in a corner consistent with the wall color of the first
phase, whereas the control group is rewarded in the diagonally
opposite corner. The initial values for elements F1–F4 in the
second phase were taken from their value after the 20th trial of the
first phase. The associative strength of element B was reset to 0.1
for the second phase, and elements G and W began with a value of
0 because there were no geometric cues in the first phase.

Here, as in the model of Experiment 1 of this article, what
determines the outcome of the tests is the relative weight ofVG in
the sumVB � VG � VW, because elements B, G, and W are the
only cues available at test time. The percentage of this sum
captured byVG is always greater in the control group than in the

experimental group, and this difference increases with continued
training. Thus, we expect that after sufficient training, the control
group would be significantly better than the experimental group,
precisely as observed by Pearce et al.’s (2006) Figure 4.

Experiment 4 of Pearce et al. (2006) expands and confirms the
results of Experiment 3 by showing that they hold even when the
rewarded corner is at an all-white or all-black corner. A model of
this experiment is not presented.

Summary

As the examples given earlier show, the current model is capa-
ble of generating both cue competition and potentiation of geom-
etry by featural information. The model makes clear that even
when cue competition always occurs, choice in instrumental spa-
tial learning does not always directly reveal it. Instead, results
resembling potentiation or independent learning of cues may be
found. In some cases, what we have termedfeature enhancement
may dampen the effects of overshadowing or blocking because of
the way in which the course of learning is determined by prior
learning and the animals’ choices. The key, however, to the dif-
ferent results seen is in the differential effect of cue competition on
the different elements, particularly in ambiguous enclosures. In
such cases, where geometric cues interact by being present at some
of the same corners as featural cues, the choices made by the
subject can result in nondiscriminative elements, such as contex-
tual elements or the incorrect geometry, being affected by cue
competition more than the geometry. At test, it is the relative
associative strengths of the remaining elements that determine
whether overshadowing or potentiation is seen, despite the under-
lying cue competition in all situations.

Thus, we can state a few general rules concerning when cue
competition is seen in geometry studies, according to our model.
Cues (elements) that occur at the same locations influence each
other’s associative strengths. In the Rescorla–Wagner model, this
influence is purely competitive, but in our model, which models
operant tasks, cues that co-occur can also increase (or decrease) the
probability of visiting the locations in which they occur, thus
enhancing (or interfering with) learning about other cues at the
same location. When this occurs at rewarded locations, it leads to
feature enhancement (such as in Wall et al., 2004, in which an
unambiguous cue at the rewarded location enhanced learning
about the geometry of that location). Additionally, when cues that
are innately attractive or highly salient (such as the all-black corner
in Graham et al., 2006, and Pearce et al., 2006) co-occur with other
cues, they also enhance learning about these other cues, whether or
not they are at a rewarded location. When an attractive cue is at an
unrewarded location, it may hasten the development of inhibition
to the geometric cues at that location.

The model also emphasizes the important difference between
geometrically ambiguous and unambiguous enclosures. In the
model’s terms, a geometrically ambiguous enclosure is one at
which the correct geometry (element G in the examples given
earlier) occurs at more than one location. In the absence of addi-
tional cues (such as corner panels or colored walls), the model
predicts that subjects do better in the unambiguous enclosures
(e.g., the KW group does better than the KBW group in Pearce et
al.’s, 2006, Experiment 1). This difference, however, is usually
swamped by the interactions between features at rewarded and
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unrewarded locations with geometric cues. The model also makes
clear that although various kinds of features—one or more colored
walls, a single beacon—may serve to disambiguate geometric
cues, the nature and arrangement of such cues should be taken into
account in geometry-learning studies.

The current model does not accurately predict all the results in
the literature (e.g., group shape only in Graham et al.’s, 2006,
Experiment 1 and group shape� no color in Experiment 3 of the
same article). The model as presented here also does not capture
generalization between similar cues, such as angles of the same
size at different locations (e.g., the two right angles in a kite-
shaped enclosure) because it treats each geometric cue as a unique
combination of angle and left–right wall lengths. Decomposing the
geometric cues into additional elements in the model would be
straightforward and might be useful for some purposes.

Numerous studies of spatial learning in water tanks, radial
mazes, and other laboratory environments have firmly established
overshadowing and blocking as phenomena of spatial learning
when geometric cues are not involved (Chamizo, 2003). For ex-
ample, training with a beacon at the platform in a water tank blocks
learning about landmarks later introduced around the tank (Roberts
& Pearce, 1999). Our model makes clear, however, that it is not the
nature of the spatial cues but rather the way in which they are
arranged that leads to different results with geometry. Unlike the
unambiguous arrays of unique objects typical of laboratory tests of
landmark learning, the enclosures used in some of the studies
modeled in this article render geometric cues ambiguous. In addi-
tion, in demonstrations of cue competition between landmarks and
beacons, differences in salience among different classes of cues
may favor some classes of cues overshadowing others. Landmarks
are by definition further away from a goal than a beacon, and thus
they are likely less salient. This could make them easily blocked in
a situation like that used by Roberts and Pearce (1999).

Predictions of the Model

Apart from explaining the results of past studies, the current
model makes several predictions that have not yet been tested. The
feature enhancement effect, for example, is transient and operates
only when the associative strengths are relatively small. When the
associative strengths of the geometry and features are close to
asymptote, the effects of cue competition become apparent in the
animal’s choices. The associative strength of the geometry begins
to decrease, and tests in the absence of features should show
overshadowing or blocking of the geometry. This requires that
subjects be trained for a long time in, for instance, the initial phase
of a blocking experiment, so that the blocking cue gains high
associative strength as well as a high probability of being chosen.

Additionally, the model predicts that a feature at the rotational
corner of a rectangular enclosure—as in the example of Cheng
(1986), discussed in the Single-Choice Model section of this
article, and Kelly and Spetch, (2004b)—becomes a conditioned
inhibitor. If this is true, and the feature may be assumed to retain
its associative strength when tested in a different context, it should
be possible to test subjects’ responses to the features in the absence
of geometric cues. For instance, in the model of Cheng, F3, the
feature at the rotational corner, and F2, the feature at the near
corner, both become conditioned inhibitors. However, the associa-
tive strength of F3 is more negative that that of F2. If we test

similarly trained subjects in a square enclosure (in which there are
no geometric cues) in which two of the corners contain F3 and the
other two contain F2, the model predicts that subjects prefer the
corners that contain F2 over those containing F3, even though
neither feature is ever paired with a reward during training, and F3
was paired with the correct geometry during training.

Finally, the assertion that geometry learning and feature learning
interact associatively raises the possibility of designing traditional
operant conditioning experiments that imitate geometry-learning
experiments. If the results of these experiments are consistent with
the results of geometry-learning experiments (as, e.g., the results
of Cheng, 1986, are consistent with the results ofAX�, BX�
discrimination studies), this would constitute further support for
the current model. Kelly and Spetch (2004a, 2004b) have trained
pigeons and people in a two-dimensional operant version of the
task studied by Cheng (1986). The results for both species were
similar to those reported by Cheng for rats, in that although
features provided better information for solving the task, geometry
was still learned, and in fact learning of geometry was enhanced by
the availability of featural information. Kelly and Spetch (2004a)
discussed their findings in terms of the correspondence between
encoding processes in two-dimensional and three-dimensional spa-
tial tasks, but the similarities between their results and those
obtained in three-dimensional environments could as well result
from the common underlying learning process depicted by our
model and could have little to do with the fact that the tasks are
both spatial.

Conclusion

The model presented here is an adaptation of the Rescorla–
Wagner model of classical conditioning (Rescorla & Wagner,
1972) for geometry learning and indeed for instrumental choice
more generally. It is a purely associative learning model that
preserves the competition for associative strength inherent in the
Rescorla–Wagner model and is shown to be capable of explaining
several of the basic features of geometry learning, such as high
levels of rotational errors during training, potentiation of geometry
learning by features (feature enhancement), and an apparent lack
of cue competition in some situations and not others. Of impor-
tance, it is precisely these features and their apparent incompati-
bility with associative learning processes that have been taken
(e.g., by Pearce et al., 2001; Wall et al., 2004) to support sugges-
tions (Cheng, 1986; Cheng & Gallistel, 2005; Gallistel, 1990) that
geometry learning functions by means of a privileged process.
Because spatial learning tasks are operant tasks, the model predicts
that the choices made by subjects, which determine which stimuli
they are exposed to, also determine the course of learning. The
model does not, however, attempt to explain how geometry is
encoded or what aspects of the geometry are encoded. It remains
true that animals are somehow capable of extracting some aspect
of the shape of an enclosure and encoding it in memory (see Cheng
& Newcombe, 2005). It is likely that there is a perceptual or other
low-level module that accomplishes this. However, as the present
model shows, once geometric information has been encoded, there
is no need to assume that it then enters into learning in any special
way.
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Appendix

Multiple-Choice Version Example

This appendix presents a detailed example of how the multiple-
choice version of the model is calculated. We model a water-maze
analogue of Wall et al.’s (2004) Experiment 3, which served as an
example for the single-choice version of the model. To the best of
our knowledge, precisely this experiment has not been performed,
although Hayward et al. (2003, 2004) reported several somewhat
similar studies in which rats were trained in rectangular water
tanks with a beacon at the goal (the platform). The current model
correctly predicts Hayward et al.’s results (compare Panel A of
Figure A1 in this article with the top panel of Hayward et al.’s,
2004, Figure 2), although we do not present a model of the control
groups they used. Aside from illustrating the working of the model
with a comparatively simple and (by now) familiar example,
modeling this hypothetical experiment demonstrates that the
multiple-choice version predicts the same pattern of results as the
single-choice model. Because the only difference between the two
versions of the model is the way in which choice probabilities are
calculated, we expect the two versions to generally give similar, if
not identical, results.

We assume that a group of rats is trained in a rectangular water
tank to locate a submerged platform in one corner, as in Figure 1.
The platform is marked by a distinctive beacon. Platform and
beacon are always in the same corner of the enclosure. The model
for this experiment has four elements: B, representing the elements
present at all corners; G, the geometry of the correct and rotational
corners; W, the geometry of the incorrect corners; and F, the
beacon attached to the platform. We assume, as we did earlier, that
the associative strength of B starts at 0.1, and that the associative
strengths of all the other elements start at 0. All� values are set at
0.04.

In a rectangular or any other four-sided enclosure, there are 16
possible paths that a subject can take to the rewarded corner. These
are listed in Table A1, along with the probability of occurrence of
each path on Trial 1.

In Table A1, C refers to the correct corner, R to the rotational
corner, N to the near corner, and F to the far corner (see Figure 1).
Thus, for example, the path designated RFC refers to the rat
choosing the rotational corner first, followed by the far corner, and
then the correct corner.

PR| is the probability of choosing the rotational corner first.PC|R

is the probability of choosing the rotational corner first and then
the correct corner (i.e., it is the probability of C given that R).
PR|NF is the probability of choosing the near corner first and then
the far corner and then the rotational corner and so on. Note that
choices of the correct corner after all the other corners have been
visited (e.g.,PC|RNF) are not included, because this probability is
always 1. In addition, choices of corners after choosing the correct
corner are not included, because a visit to the correct corner always
terminates the trial.

The initial probability of choosing each corner is calculated as
before, by Equation 2:PL � VL/
VL. Thus, the initial probability
of first visiting the rotational corner for this example is given by
the following:

PR� � �VB � VG�/�4 � VB � 2 � VG � 2 � VW � VF�. (A1)

Once a particular corner has been visited, the following choice
is made from among only the remaining corners. The sum of the
associative strengths of the elements at all the corners (
VL), the
denominator of the equation forPL, needs to be modified to reflect
the fact that the corner or corners already visited cannot be revis-
ited. Thus, the probability of visiting the correct corner after
having visited the rotational corner (PC|R) is given by the follow-
ing:

PC�R � �VB � VG � VF�/�3 � VB � VG � 2 � VW � VF�. (A2)

Here, the denominator is not the sum of all the associative
strengths of the elements at all corners but is the sum of only the

Figure A1. Comparison of acquisition and test results for the worked example of each version of the model.
Panel A shows first choice probabilities for the first 20 trials of the example. Panel B shows choice probabilities
for the test after 20 trials of training in both versions of the model. SC� single-choice version; MC�
multiple-choice version.
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elements at corners C, N, and F (i.e., those corners from which the
subject is making its choice).

Given that we have set all the initial associative strengths for the
elements (see our earlier discussion), we can now calculate nu-
merically the probability that each possible path occurs on the first
trial. Thus, for example, the probability of the RC path occurring
is given by the following:

PRC � PR� � PC�R � 0.25� 0.333� 0.0833. (A3)

The Numerical Probabilitycolumn of Table A1 gives the proba-
bility for the occurrence of each possible path. The sum of the
probabilities of all the paths is equal to 1.

The overall probability of a particular corner being visited on a
given trial is the sum of the probabilities of all the paths that
include that corner. Thus, using Table A1, we can calculate that the

overall probability of visiting the rotational corner on a given trial
is as follows:

PR � �PR� � PC�R� � �PR� � PN�R � PC�RN� �

�PN� � PR�N � PC�NR� � �PR� � PN�R � PF�RN�

� �PN� � PR�N � PF�RN� � �PN� � PF�N � PR�FN�

� �PR� � PF�R � PC�RF� � �PF� � PR�F � PC�FR�

� �PR� � PF�R � PN�RF� � �PF� � PR�F � PN�RF�

� �PF� � PN�F � PR�NF�. (A4)

For the first trial of the present example, this comes to 0.5.
We can now calculate the changes in the associative strengths of

the elements as a result of visits to the various corners. For
example, the change in the associative strength of element G,
present at the correct and rotational corners, is given by the
following:

�VG � ��1 � VBFG� � ��0 � VBG�PR � 0.04�1 � 0.1�

� 0.04�0 � 0.1�0.5� 0.034. (A5)

This equation has two terms, similar to Equation 6, one for each
corner at which the element is present. Note that the first term,
representing the learning resulting from visits to the correct corner,
is not multiplied by a choice probability. This reflects the fact that
the overall probability of choosing the correct corner on a given
trial in the current version of the model is always 1 (i.e., the correct
corner is visited on every trial). The changes in associative
strengths of the other elements are calculated in a similar manner:
�VB � 0.03,�VF � 0.036,�VW � �0.004.

Figure A1 shows a comparison of the results of this experiment,
as given by both versions of the model. Panel A shows the choice
probabilities for the first 20 trials as predicted by both the single-
choice and multiple-choice versions. Panel B displays the pre-
dicted test results. The two models give similar, although not
identical, results. Part of the difference, no doubt, is due to the
different value for� used in the different models. Most impor-
tantly, however, both predict that the majority of errors are to the
rotational corner and that animals will strongly prefer the geomet-
rically correct location when tested in the absence of the feature.
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Table A1
List of Possible Paths and Sample Calculations of the
Probability of Occurrence of Each Path for the Demonstration
of the Multiple-Choice Model

Path Probability Numerical probability

C PC� 0.25
RC PR� 	 PC�R 0.0833
NC PN� 	 PC�N 0.0833
FC PF� 	 PC�F 0.0833
RNC PR� 	 PN�R 	 PC�RN 0.0416
RFC PR� 	 PF�R 	 PC�RF 0.0416
NRC PN� 	 PR�N 	 PC�NR 0.0416
FRC PF� 	 PR�F 	 PC�FR 0.0416
NFC PN� 	 PF�N 	 PC�NF 0.0416
FNC PF� 	 PN�F 	 PC�FN 0.0416
RNFC PR� 	 PN�R 	 PC�RN 0.0416
RFNC PR� 	 PF�R 	 PN�RF 0.0416
NRFC PN� 	 PR�N 	 PF�NR 0.0416
NFRC PN� 	 PF�N 	 PR�NF 0.0416
FRNC PF� 	 PR�F 	 PN�FR 0.0416
FNRC PF� 	 PN�F 	 PR�FN 0.0416

Note. C � correct corner; R� rotational corner; N� near corner; F� far
corner. Thus, for example, RFC represents the path rotational–far–correct.
PR� � probability of choosing the rotational corner first;PC�R � probability
of choosing the rotational corner first and then the correct corner (i.e.,
probability of C given that R);PR�NF � probability of choosing the near
corner first, then the far corner, then the rotational corner, and so forth.

212 MILLER AND SHETTLEWORTH


